Please use this identifier to cite or link to this item:
Title: Electrical charge transport and optical properties of iron pyrite
Authors: Shukla, Sudhanshu
Keywords: DRNTU::Engineering::Materials
Issue Date: 2017
Publisher: Nanyang Technological University
Source: Shukla, S. (2018). Electrical charge transport and optical properties of iron pyrite. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Iron pyrite is among the promising solar materials owing to its remarkably high optical absorption, optimal band gap, abundance, and non-toxicity. However, its solar conversion efficiency is limited to about 3 % mainly due to its low photovoltage. To address that, thin films prepared by spray pyrolysis, spin-coating of hot-injection synthesized nanocubes and pulsed laser deposition were sulfurized to obtain the pure pyrite phase. The film showed similar electrical properties and degenerate semiconducting behavior with Mott-VRH charge transport over a wide temperature range. Charge carrier dynamics in nanocube thin film revealed fast carrier localization and long-lived trap states in the pure pyrite. Temperature dependent electrical and magnetic behaviors supported the existence of intrinsic localized gap states. A non-standard, electrical experiment was carried out on a natural pyrite single crystal to assess the surface and bulk resistivities of pyrite which showed a significant difference in them for temperatures less than 120 K. It is concluded that the poor photovoltage generated by pyrite solar devices is due to the intrinsic defects in the material rather than to impurities or secondary phases.
DOI: 10.32657/10356/70587
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:IGS Theses

Files in This Item:
File Description SizeFormat 
Sudhanshu Shukla_Thesis.pdfDoctoral Thesis5.73 MBAdobe PDFThumbnail

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.