Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/71018
Title: Impedance control finishing with compliant manipulator
Authors: Steven
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Control and instrumentation::Robotics
Issue Date: 2017
Abstract: Collaborative robots or cobots have been a trend in robotics industry. It is shown that the collaboration between human and robot would improve the productivity and quality of products. Such possibility can be adopted on surface finishing process, as human tend to be inaccurate and inconsistent. Good quality of surface finishing requires accurate control of material removal rate, which depends on various parameters, such as abrasive tools used, contact force between tools as well as grinding speed. In general, there are two types of control strategies have been implemented in todays automated machining and repair process, that is position and force control. However, these strategies are often inadequate for finesse finishing operations or unstable tasks such as edge grinding and profiling. Besides position and force, stiffness (or compliance) and damping is another key factor required in finishing process, which known as impedance control. The impedance control mode of the robot (specifically on KUKA iiwa-Lbr) allows the stiffness and damping to be modulated. This project aims to study and develop various path planning method by utilising various programming software on compliant robot in autonomous way. Selecting different path may be challenging as there exist limits to the robot’s motion and orientations of end tool. In addition, this project also cover part of analysis on different parameters affecting surface finishing process, such as grinding speed, stiffness values and contact force generated. This project is a joint lab programme established between Nanyang Technological University (NTU) and Rolls-Royce (RR), under an official name of Rolls-Royce@NTU Corporate Lab
URI: http://hdl.handle.net/10356/71018
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP_Steven.pdf
  Restricted Access
4.89 MBAdobe PDFView/Open

Page view(s)

104
checked on Sep 23, 2020

Download(s)

13
checked on Sep 23, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.