Please use this identifier to cite or link to this item:
Title: The effect of small molecule inhibitors on ciliogenesis
Authors: Chan, Lovynn Wan Ting
Keywords: DRNTU::Science
Issue Date: 2017
Abstract: Cilia are complex hair-like sensory organelles that extend from the membrane of almost all cell types in humans and defects in cilia have been found to be responsible for a myriad of human diseases and cancers. There are several key players involved in the process of ciliogenesis and one of which is the histone deacetylases (HDACs). Activation of HDACs causes ciliary resorption and induces cell proliferation. Small molecule inhibitors of HDACs, sodium butyrate and Trichostatin A, prove to potentially induce ciliogenesis and repress cell proliferation but few studies have been done to verify this finding. The purpose of this study is to identify the optimal concentration for drug treatment of sodium butyrate and Trichostatin A as well as their efficacy. With varying concentrations, sodium butyrate is able to induce ciliogenesis in up to 23% of RPE1 cells and 43% of BSC1 cells while Trichostatin A is proven to be able to induce ciliogenesis in up to 29% of RPE1 cells after 24 hour incubation. Varying concentrations of sodium butyrate and Trichostatin A have no significant effect on the length of cilia in both RPE1 and BSC1 cells. Both sodium butyrate and Trichostatin A present as dose-dependent anti-proliferative agents by targeting HDACs.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SBS Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Final Report.pdf
  Restricted Access
841.19 kBAdobe PDFView/Open

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.