Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/71517
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWong, Xin Yu
dc.date.accessioned2017-05-17T06:32:51Z
dc.date.available2017-05-17T06:32:51Z
dc.date.issued2017
dc.identifier.urihttp://hdl.handle.net/10356/71517
dc.description.abstractOver the years, Silicon-Aluminum (Si-Al) alloy has been used in various industries such as the aerospace industry as well as for the high-duty electrical packaging. Mechanical properties of the Si-Al alloy include the high strength-to-weight ratio, higher wear resistance and low thermal expansion coefficient. However, laser welding of the alloy has proven to be difficult because of the defects found in the welds. In this project, the laser welded 50% Si-Al alloy is studied to obtain the defects and how the microstructure affects the properties. Looking at the microstructure of the alloy, three phases are obtained, namely the primary silicon particles, eutectic silicon and α-Al. The size, morphology and distribution of the primary silicon particles influence the mechanical properties. The finer and uniform the primary silicon particles is, the better the mechanical properties. Micro-hardness test is conducted on the three zones, fusion zone, heat-affected-zone (HAZ) and the base metal. The fusion zone is found to have the highest hardness out of the three zones, suggesting that it consists of the finest grains. Defects in the laser welds include lack of fusion, porosity and oxide inclusions. Incomplete fusion is the result of poor welding techniques. Too little heat input is unable to make the metals molten enough to weld together. This could also cause crack initiation which ultimately leads to the failure of the alloy. Porosity can be in the form of hydrogen porosity and porosity caused by the instability of the keyhole. Hydrogen porosity depends greatly on the solidification rate. The fast solidification rate leads to the hydrogen unable to escape, resulting it to be trapped inside the weld forming pores. Instability of the keyhole can be reduced significantly by controlling the welding parameters. Shorter wavelength lasers such as the Nd:YAG and the use of high welding speed and low heat input help to produce stable keyhole. Oxide inclusions formed during the laser welding process where the aluminum oxide reacts with air. To avoid such occurrence, it is important to ensure the cleanliness of the working station.en_US
dc.format.extent78 p.en_US
dc.language.isoenen_US
dc.rightsNanyang Technological University
dc.subjectDRNTU::Engineering::Mechanical engineeringen_US
dc.titleLaser welding of high Si-Al alloyen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorZhou Weien_US
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.description.degreeBachelor of Engineering (Mechanical Engineering)en_US
item.fulltextWith Fulltext-
item.grantfulltextrestricted-
Appears in Collections:MAE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
TBS - Final FYP Report.pdf
  Restricted Access
6.24 MBAdobe PDFView/Open

Page view(s)

114
Updated on Dec 3, 2020

Download(s)

15
Updated on Dec 3, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.