Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/71683
Title: Electromechanical interaction in marine propulsion
Authors: Kumar, Kishen
Keywords: DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 2017
Abstract: In present day, electric propulsion systems are one of the most highly adopted platforms used in the marine industry. Electric motor driven Azimuth thrusters and podded propellers supersede direct mechanical diesel propulsion systems in operational efficiency and lowering maintenance costs. However, reports of azimuth drivetrain failures have emerged and research has shown that the operational hydrodynamic loads and erratic wave conditions in extreme sea state conditions are the root cause. It has been established that unbalanced loading between the driving electric motor and the mechanical drivetrain system connecting the propeller has resulted in torsional vibrations that cause the breakdown. Although much effort has been put into improving the design of the propulsion systems, insufficient work has been done to study this electromechanical interaction in a marine propulsion system. This project analyzes the mechanical drivetrain system of an electric azimuth thruster when exposed to simulated conditions like that of extreme sea state. The focus of the simulation is to capture the behavior of the torsional vibrations caused by the load changes on the electric motor and drivetrain. This would aid in engineering a solution that would deem extremely useful for the marine industry. Researching on mechanical systems is a necessity of this project as the foundation is based on mechanical theory. Software applications such as MATLAB®, Autodesk® Inventor Professional and SOLIDWORKS® have been used to understand the fundamentals of mechanical theory and to design and simulate the 3D model respectively. The MATLAB simulation uses a simplified 3 degree of freedom springmass-damper lumped model to focus on the more dominant factors that affect the drivetrain. Moreover, to keep the 3D simulation as accurate as possible, the designed test bed uses components designed directly from its respective manufactures. The experiments performed in this project are based on the results, research, and literature studies of the different scholarly articles.
URI: http://hdl.handle.net/10356/71683
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Final FYP Report_KISHENKUMAR_U1421612K.pdf
  Restricted Access
4.14 MBAdobe PDFView/Open

Page view(s) 1

90
checked on Oct 19, 2020

Download(s) 1

11
checked on Oct 19, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.