Please use this identifier to cite or link to this item:
Title: Multiscale studies and parameter developments for metal-organic framework Fe-MOF-74
Authors: Moeljadi, Adhitya Mangala Putra
Keywords: DRNTU::Science::Chemistry::Physical chemistry::Quantum chemistry
Issue Date: 2017
Source: Moeljadi, A. M. P. (2017). Multiscale studies and parameter developments for metal-organic framework Fe-MOF-74. Doctoral thesis, Nanyang Technological University, Singapore.
Abstract: Metal–Organic Frameworks (MOFs) is class of materials, constructed from an extensive network of coordination polymers that exhibits distinct properties and architectures, depending on the nature of its elementary building unit. Since the introduction of MOFs nearly two decades ago, they have inspired a growing body of research to accomplish practical applications in various scientific and industrial fields. In particular, the design and application of MOFs for gas absorption and storage, gas separation technology as well as selective catalysts are already established and well documented. From computational perspective, an in-depth understanding of chemical processes at a microscopic level can benefit the pursuit of applicability by providing insight as to how to achieve truly exceptional materials. On the other hand, since MOFs feature an extended system with staggering size, it also motivates the development of new theoretical methods that provides accurate description of real systems based on reasonable models. Through this thesis, computational methods such as density functional theory (DFT), molecular mechanics (MM), hybrid quantum mechanics/molecular mechanics (QM/MM) method as well as periodic calculations are developed and applied to some examples of important chemical processes in MOFs. In this thesis, we present our findings as our contribution to the ongoing efforts to utilize computational methods in the field of MOFs.
DOI: 10.32657/10356/72322
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Theses

Files in This Item:
File Description SizeFormat 
Adhitya Mangala Putra Moeljadi.Thesis.2017.Amended - SoftCopy.pdf4.7 MBAdobe PDFThumbnail

Page view(s)

Updated on Jan 21, 2021

Download(s) 50

Updated on Jan 21, 2021

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.