Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/72609
Title: Intra-hour solar irradiance forecasting using ground-based sky imager
Authors: Zhang, Hongming
Keywords: DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 2017
Abstract: Solar intermittency is a critical issue which limits the development of grid-connected photovoltaic system in the applications of solar energy. High accuracy of solar irradiance forecasting plays an important role in establishing modern photovoltaic generation power system. With the prediction data provided, the system will take appropriate actions to control the energy storage system. This thesis focuses on one of the methods of short-term solar irradiance forecasting based on ground-based sky imager, i.e. sky images captured by Total Sky Imager (TSI) and Wide Angle High- Resolution Whole Sky Imaging System (WAHRSIS). The images obtained will be processed to determine the cloud cover and analyzed to estimate the cloud motion velocity by using the MPIV algorithm. The cloud condition of next few minutes will be predicted and consequently the solar irradiance values can be calculated based on the program developed in this project. The sample results taken in this project show that the program in this project can forecast the solar irradiance in specific location for about 5-15 minutes with mean prediction error about 20%. The intra-hour solar irradiance can be obtained by consecutively collecting images into the program. Depending on different locations and sky imager systems, the same algorithm can be applied accordingly by calibrating the threshold value for cloud determination and image resolution to forecast the solar irradiance.
URI: http://hdl.handle.net/10356/72609
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
ZhangHongming_2017.pdf
  Restricted Access
15.21 MBAdobe PDFView/Open

Page view(s)

210
Updated on Jun 26, 2022

Download(s)

9
Updated on Jun 26, 2022

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.