Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/72750
Title: Development of deformation-based nanoimprint technique for advanced functional applications
Authors: Vu, Tuan Duc
Keywords: DRNTU::Engineering::Manufacturing::Polymers and plastics
DRNTU::Engineering::Materials::Metallic materials
Issue Date: 2017
Abstract: Holograms are one of the anti-counterfeiting solutions which have been used in the manufacturing and finance sector to secure the authenticity of their products in recent years. Everyday examples are on banknotes, credit cards, or on package of pharmaceutical products. Holograms are formed on materials surface through a matrix of micro-features. Not only offering optical enhancement such as holograms, microfeatures on material surface can also be used for various advanced functional application in biology, electronics, etc. Hence, a method to replicate these microfeatures on different materials surface are necessary. Various different solutions have been explored in past studies for both non-crystalline and crystalline materials. In this project, we developed a deformation-based technique to successfully emboss COC and PMMA substrates with sub-2μm features. This technique includes: (i) a comprehensive fabrication route for micro to nano-size metal shim, (ii) a replication system that completely compensate for parallelism issue of the instruments, and (iii) a brief study on how holding time during embossing affect the feature height replicated on polymeric substrates. This success allowed more non-crystalline materials testing using this new technique. Furthermore, we also explored a similar system for metallic materials. The experimental system was able to fully emboss a small Aluminium 2024 substrate of 10mm diameter. However, the experimental die fabrication process for a low-cost superhard Diamond-like-carbon (DLC) die failed to deliver. New fabrication process for this proposed DLC die is needed so that total micro-feature replication can be achieved.
URI: http://hdl.handle.net/10356/72750
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FinalReport_ver2_VuTuanDuc.pdf
  Restricted Access
3.32 MBAdobe PDFView/Open

Page view(s)

155
Updated on May 7, 2021

Download(s) 50

52
Updated on May 7, 2021

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.