Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/72880
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKeane, Phillip
dc.date.accessioned2017-12-11T02:43:29Z
dc.date.available2017-12-11T02:43:29Z
dc.date.issued2017
dc.identifier.citationKeane, P. (2017). Encapsulation of electronic hardware into FDM manufactured thermoplastic drone structures. Master's thesis, Nanyang Technological University, Singapore.
dc.identifier.urihttp://hdl.handle.net/10356/72880
dc.description.abstractFDM (Fused Deposition Modeling) additive manufacturing is allowing manufacturers to consolidate multiple complex assemblies into single printed parts, with minimal reduction in geometric complexity. This has the potential to reduce both manufacturing and assembly steps. This reduction in production stages can result in cost savings, reduction in assembly line components and also in fewer technical staff required for manufacturing operations. This thesis will build upon these ideas by adding electronic components into the 3D printing stage and will use a 3D printed quadcopter as an example. The aim is to demonstrate a proof-of-concept of functional electronic systems within a high temperature printing process, and to determine best practices for the embedding of hardware. In order to reduce the number of fasteners in the printed drone, snap-fit clips were printed in-situ as part of the drone airframe. This thesis will examine some of the limitations involved when printing snap-fit clips of small scale, and provides a graph showing a zone of manufacturability, based on printer extrusion width dimensions for a given strain requirement. It is demonstrated that a clip must be a minimum of 0.8128 mm thick in order to be manufactured by 3D printing in accordance with the literature guidelines for snap-fit clips. Additionally, it is shown that when a print job is paused, cooled and restarted in order to embed separate hardware items, the bond layer at the pause is weakened. This weakening effect results from the thermal history and this thesis will investigate and quantify the effects of cooling on the bond strength. In summary, the loss of bond strength cannot be recovered by reheating the part, and the loss of strength can be minimised by a combination of the highest print chamber setting (170℃), a minimal reheat time (2 minutes 5 seconds) and a cooling temperature of 80℃.en_US
dc.format.extent135 p.en_US
dc.language.isoenen_US
dc.subjectDRNTU::Engineering::Aeronautical engineeringen_US
dc.subjectDRNTU::Engineering::Manufacturing::Polymers and plasticsen_US
dc.titleEncapsulation of electronic hardware into FDM manufactured thermoplastic drone structuresen_US
dc.typeThesis
dc.contributor.supervisorChua Chee Kaien_US
dc.contributor.supervisorSunil Chandrakant Joshien_US
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.description.degreeMaster of Engineering (MAE)en_US
dc.identifier.doi10.32657/10356/72880-
item.grantfulltextopen-
item.fulltextWith Fulltext-
Appears in Collections:MAE Theses
Files in This Item:
File Description SizeFormat 
Phillip Keane G1400793A.pdfMaster of Engineering research thesis10.73 MBAdobe PDFThumbnail
View/Open

Page view(s) 50

574
Updated on Jul 22, 2024

Download(s) 5

593
Updated on Jul 22, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.