Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/73186
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTan, Yu Jun
dc.date.accessioned2018-01-16T02:01:26Z
dc.date.available2018-01-16T02:01:26Z
dc.date.issued2018
dc.identifier.citationTan, Y. J. (2018). Hybrid bioengineering of tubular constructs for esophagus by melt-drawing and 3D bioprinting. Doctoral thesis, Nanyang Technological University, Singapore.
dc.identifier.urihttp://hdl.handle.net/10356/73186
dc.description.abstractTissue engineering (TE) offers an important alternative for surgical replacement of diseased or traumatized esophagus. The TE replacement can replicate the native esophagus in shape and performance. This dissertation describes the fabrication and characterization of two key components in esophageal TE, i.e. the muscle and the epithelium. Two different additive fabrication techniques are investigated due to the inherent diversity in structure of an esophagus. Customizations of dimension and mechanical properties are made possible by the additive fabrication, which are vital factors for implantation across ages and genders. Tubular poly(L-lactide-co-e-caprolactone) (PLC) scaffold is fabricated by a melt-drawing method to mimic the structure of circular muscles. The microfibrous solid scaffold serves as exterior of the TE replacement, which is strong and elastic circumferentially to accommodate bolus. Moreover, it consists of highly aligned microfibers in the circumferential direction with a uniform distribution of fiber diameters, which allows the muscle cells to grow along the fiber alignment direction. The crystallinity of PLC fibers increases with an increasing melt-drawing speed due to the strain-induced crystallization. The modulus and the strength are increased with an increase in crystallinity of the PLC scaffold. Tensile properties of the tubular scaffold are comparable to those of the human esophagus in the circumferential direction, which also can be finetuned by adjusting the melt-drawing fabrication parameters. Furthermore, tubular scaffolds with varying diameters and lengths are fabricated. In addition, 3D bioprinting is employed to regenerate a layer of cell-laden, folded epithelium in a lumen of esophagus. A new bioink using cell-laden microspheres (CLMs) with a thin encapsulation of agarose-collagen blend hydrogel (AC blend hydrogel) is introduced. Highly porous microspheres provide high specific surface areas for anchorage-dependent cells to attach, infiltrate and proliferate before printing. AC blend hydrogel allows a good printability of CLMs, with immediate gelation of the construct upon printing on the chilled build platform. Tightly packed construct is bioprinted with high stacking ability using a micropipette extrusionbased method. The mechanical strength of the bioprinted construct is considerably enhanced when compared to that with just AC blend hydrogel. The bioprinted cells proliferate and maintain high viability for up to 2 weeks. In vitro performance of individual components of a hybrid esophageal TE construct is successfully illustrated. The hybrid bioengineering of muscle cell-seeded exterior tubular scaffold and 3D bioprinted interior folded epithelium in the lumen have taken a great step towards functional esophageal TE.en_US
dc.format.extent225 p.en_US
dc.language.isoenen_US
dc.subjectDRNTU::Science::Medicine::Tissue engineeringen_US
dc.titleHybrid bioengineering of tubular constructs for esophagus by melt-drawing and 3D bioprintingen_US
dc.typeThesis
dc.contributor.supervisorLeong Kah Faien_US
dc.contributor.schoolSchool of Mechanical and Aerospace Engineeringen_US
dc.description.degreeDoctor of Philosophy (MAE)en_US
dc.identifier.doi10.32657/10356/73186-
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:MAE Theses
Files in This Item:
File Description SizeFormat 
Thesis_3_3.pdf4.48 MBAdobe PDFThumbnail
View/Open

Page view(s) 50

532
Updated on Mar 28, 2024

Download(s) 10

433
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.