Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/74237
Title: Effect of hydraulic retention time on organic removal and biofilm development in gravity-driven membrane filtration for rainwater treatment
Authors: Soon, Genevieve Qian Yi
Keywords: DRNTU::Engineering::Environmental engineering::Water treatment
Issue Date: 2018
Abstract: Water scarcity is a pressing issue that a large part of the world faces. Rainwater harvesting has been used for decades as a source of water, particularly in areas with few water catchments, or lack advanced technologies to treat water. However, even for non-potable use, it needs to be treated as it contains bacteriological contaminants. There is huge potential for gravity-driven membrane (GDM) filtration to be used for rainwater treatment as it has low operating costs, does not require a centralized water system and frequent chemical cleanings. This is due to its unique characteristic of a biofouling layer formed on the membrane surface. The objective of this study was to examine the effect of hydraulic retention time and short-term backwashing on membrane performance and permeate quality of submerged GDM filtration systems for rainwater treatment. Results showed that hydraulic retention time and backwashing period did not have a significant impact on membrane performance. Furthermore, for all the backwash periods, the recovery in permeate flux was temporary and returned to the original flux within a day, and was lower than the flux of the membrane without backwashing. This implies that the biofilm/cake layer has a significant role in flux stabilization and the removal of this layer through backwashing will decrease the permeate quality and membrane performance.
URI: http://hdl.handle.net/10356/74237
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:CEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP Report_Genevieve Soon.pdf
  Restricted Access
Main Report4.31 MBAdobe PDFView/Open

Page view(s) 50

97
checked on Oct 21, 2020

Download(s) 50

23
checked on Oct 21, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.