Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/74375
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLau, Charmaine Rie
dc.date.accessioned2018-05-16T14:00:36Z
dc.date.available2018-05-16T14:00:36Z
dc.date.issued2018
dc.identifier.urihttp://hdl.handle.net/10356/74375
dc.description.abstractSurveillant cameras are widely installed along roadways, and the numbers are steadily increasing. The aim of this project is to develop an automatic algorithm to detect the pedestrian from the camera. Such an automatic algorithm can bring many benefits. For example, pedestrian density can be known or predicted (i.e. counting the number of human). It can help respond more effectively to abnormal situations, such as overcrowded region.en_US
dc.format.extent54 p.en_US
dc.language.isoenen_US
dc.rightsNanyang Technological University
dc.subjectDRNTU::Engineering::Electrical and electronic engineeringen_US
dc.titlePedestrian detection from surveillance cameraen_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorChau Lap Puien_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.description.degreeBachelor of Engineeringen_US
dc.contributor.researchINFINITUS Smart Mobility Experience Lab(SMEL)en_US
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
Lau_Charmaine_Rie_FYP Report.pdf
  Restricted Access
Final Year Project Report2.9 MBAdobe PDFView/Open

Page view(s)

314
Updated on Apr 26, 2025

Download(s) 50

21
Updated on Apr 26, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.