Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/74518
Title: Reliability evaluation of power converters in hybrid AC/DC microgrid
Authors: Mohammed Firdaus Hassan
Keywords: DRNTU::Engineering
Issue Date: 2018
Abstract: This paper presents a study on the reliability of power converters operating in a hybrid AC/DC microgrid with physics-of-failure analysis of IGBT. There are two branches of reliability prediction which are widely accepted in different industry sectors, due to their different merits. They are statistical based method and physics-of-failure (PoF) method. In a hybrid microgrid environment, such intermittency of renewable sources has become a burden in providing a smooth output power during operation; which is not well modelled by the statistical based method. Therefore, a Physics-of-Analysis approach will be used to estimate the lifetime expectancy of an IGBT device. The design of the proposed simulation of a hybrid microgrid comprises of DFIG wind turbine generator supplying 10kV to the grid and a DC load that is being powered by the fuel cell. In the converter model, a pair of six low power IGBT with TO247 package is connected to machine side and the grid side respectively. The implications of the results are then evaluated using the junction temperature of the IGBT device as a basis for future cost-effective measures.
URI: http://hdl.handle.net/10356/74518
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Final_FYP_Report_U1522261E.pdf
  Restricted Access
3.61 MBAdobe PDFView/Open

Page view(s)

179
Updated on Jun 25, 2022

Download(s)

7
Updated on Jun 25, 2022

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.