Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/74632
Title: High-frequency clock generators
Authors: Lugan, Marshall Valiant
Keywords: DRNTU::Engineering
Issue Date: 2018
Abstract: The project pertains to the design of critical building blocks of an RF Frequency Synthesizer for a low-power Bluetooth medical patch application. The critical building blocks are a Voltage Controlled Oscillator (VCO), a divide-by-2 circuit, and a Frequency Divider (FD). Their overall requirements are 1.1 V supply and <10mW power dissipation, and compliance to the Bluetooth standard including 2.4-2.48 GHz frequency band (Industrial-Scientific-Medical band), 79 channels, and <120 dBc/MHz phase-noise. The VCO is designed with the LC cross-coupled topology for its low phase-noise performance. Simulation results shows that the combined VCO and Divide-by-2 circuit achieves ~ 127 dBc/MHz phase-noise at 2.4 GHz output frequency. The divide-by-2 circuit is capable in generating four output signals with 0°, 90°, 180°, and 270° phase-shifts, thereby rendering it highly useful for different state-of-the-art transmitter architectures (that demand different amounts of phase-shifts). The FD has a simple architecture and is capable of dividing the 2.4 GHz-2.48 GHz input frequency by a range of numbers from 2402 to 2480 in order to comply with the 1 MHz channel spacing Bluetooth requirement. Simulation results show that the FD dissipates 0.32 mW. From simulations, the total power dissipation of the three building blocks is 7.7 mW. The Pulse Swallow Frequency Divider employs a proposed 2/3 Dual Modulus Prescaler architecture. The proposed architecture employs a D latch based on the Current Mode Logic to reduce the transistors count, and supports complementary logic operation. The Frequency Divider also employs a simple Program Counter with a chain of D flip-flop and an Asynchronous Swallow Counter.
URI: http://hdl.handle.net/10356/74632
Schools: School of Electrical and Electronic Engineering 
Research Centres: Centre for Integrated Circuits and Systems 
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Marshall Valiant Lugan_U1420217F_FYP Final Report.pdf
  Restricted Access
3.65 MBAdobe PDFView/Open

Page view(s)

309
Updated on Jun 24, 2024

Download(s)

13
Updated on Jun 24, 2024

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.