Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/75057
Title: Employment of micropatterned hydrogels to regulate the redox status of mesenchymal stem cells
Authors: Lee, Melissa Kao Hui
Keywords: DRNTU::Science::Biological sciences
Issue Date: 2018
Abstract: A large amount of effort is being put toward engineering and mimicking the cell microenvironment in hopes of greater understanding toward cellular processes in vivo. The use of hydrogels especially is a common method used to imitate the extracellular matrix (ECM) which is essential in influencing cell characteristics and activity. Stem cell activity has been linked to changes in the stem cell microenvironment and one example is the adjustments in stem cell oxidative state as a result of changes to the ECM. This project investigates the independent effects of substrate stiffness and cell spreading area, which usually accompany one another, on intracellular ROS production by creating a controlled microenvironment through the use of biomimetic hydrogels of various stiffness and micropattern sizes. It was observed that isolating cell spreading and substrate stiffness ultimately leads to the same effect of reduced Ras homolog gene family, member A (RhoA) activation which subsequently allows for elevated Ras-related C3 botulinum toxin substrate 1 (Rac1) activity, which is a major binding partner in NOX generation of ROS. The decoupling of substrate stiffness and spreading area to identify ROS-generating pathways in stem cells could contribute to development of new regenerative medicine techniques that exploit stem cells.
URI: http://hdl.handle.net/10356/75057
Schools: School of Biological Sciences 
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SBS Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP Thesis_Melissa Lee.pdf
  Restricted Access
FYP996.65 kBAdobe PDFView/Open

Page view(s) 50

490
Updated on May 7, 2025

Download(s) 50

40
Updated on May 7, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.