Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/75398
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHeah, Chao Xiang-
dc.date.accessioned2018-05-31T03:26:30Z-
dc.date.available2018-05-31T03:26:30Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/10356/75398-
dc.description.abstractIn this paper, we used Sentiment Analysis to determine if we can predict the stock market direction. We used media and news announcements as well as press releases for our data Analysis. We adopted our own score model derived from “Loughran and McDonald” dictionary to determine the potential trade direction. Out of the 139 media and news announcements, we obtained an average of 67.09% accuracy for the period of 2015 to 2017.en_US
dc.format.extent64 p.en_US
dc.language.isoenen_US
dc.rightsNanyang Technological University-
dc.subjectDRNTU::Library and information scienceen_US
dc.titlePredicting stock market using social sentimenten_US
dc.typeFinal Year Project (FYP)en_US
dc.contributor.supervisorWong Jia Yiing, Patriciaen_US
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen_US
dc.description.degreeBachelor of Engineeringen_US
item.grantfulltextrestricted-
item.fulltextWith Fulltext-
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)
Files in This Item:
File Description SizeFormat 
FINAL_FYP_REPORT_U1320404C(13April2018)(final).pdf
  Restricted Access
5.1 MBAdobe PDFView/Open

Page view(s)

280
Updated on Jul 20, 2024

Download(s)

16
Updated on Jul 20, 2024

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.