Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/75535
Title: Learning feature representation for subgraphs
Authors: Zhang, Linghan
Keywords: DRNTU::Engineering::Computer science and engineering
Issue Date: 2018
Abstract: Graphs are a rich and versatile data structure. They are widely used in representing data like social networks, chemical compound, protein structures. Analytical tasks against graph data attracted great attention in many domains. Effective graph analytics provides users deep insights of the data. However, due to the structural characteristics of graphs, computation cost for graph analytics tasks on large graph data set can be very high. We discuss two recent frameworks inspired by the advancements in feature representation learning, neural networks and graph kernels, namely patchy-san and subgraph2vec. We conducted experiments with patchy-san and subgraph2vec frameworks for graph classification problems. With established benchmark datasets, we demonstrate that these two frameworks, despite taking different approaches, are efficient and competitive with state-of-the-art techniques.
URI: http://hdl.handle.net/10356/75535
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP Zhang Linghan.pdf
  Restricted Access
2.57 MBAdobe PDFView/Open

Page view(s)

160
Updated on Jun 24, 2022

Download(s)

7
Updated on Jun 24, 2022

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.