Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/76036
Title: Multilayer random vector functional link neural networks
Authors: Lin, Xiang
Keywords: DRNTU::Engineering::Electrical and electronic engineering
Issue Date: 2018
Abstract: With the booming development of machine learning and deep learning, Artificial Intelligence has achieved noticeable progress nowadays. More and more complex problems are solved by utilizing machine learning technique which requires deeper architecture of the artificial neural network to deal with large-scale data information and complicated scenario. The Random Vector Functional Link (RVFL) neural network is a universal approximator that has been applied to many areas to solve practical problems. However, a multi-layer architecture of RVFL has not yet been explored before. The proposedMulti-layer RVFL consists of two parts, the classifier that serves as the same function as single hidden layer RVFL, and the feature extraction part that extracts more meaningful information of input data for further classification. The feature extraction part consists of several RVFL based auto-encoders to exploit the random mapping capability of RVFL. The RVFL based auto-encoder does not need an iterative computation due to its closed-form solution which is faster to compute than gradient based back propagation method. Extensive experiments are conducted to demonstrate the great performance of Multi-layer RVFL compared to single hidden layer RVFL.
URI: http://hdl.handle.net/10356/76036
Schools: School of Electrical and Electronic Engineering 
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
LinXiang_2018.pdf
  Restricted Access
Main article1.48 MBAdobe PDFView/Open

Page view(s)

279
Updated on Jun 19, 2024

Download(s) 50

21
Updated on Jun 19, 2024

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.