Please use this identifier to cite or link to this item:
Title: Mining mobile apps for anomalies
Authors: Seow, Wei Yang
Keywords: DRNTU::Engineering::Computer science and engineering::Computer systems organization::Special-purpose and application-based systems
Issue Date: 2018
Abstract: There is no doubt that mobile applications play a huge role in our lives today, just in 2017 alone, there have been 178.1 billion mobile application downloads. [1] With our reliance on mobile applications, security of these applications is more important than ever, especially how applications handle your personal data. This project investigated the effectiveness of an approach consisting of a combination of topic modelling and static analysis to detect anomalous android mobile applications. We analysed applications from a repository known as fdroid and using Mallet, we split the applications into categories where we performed static analysis using FlowDroid on the applications. The source sink pairs of applications within each category were recorded down and a dataset was built. It was used to compare with unknown applications that belong in that category, via the source sink pairs to detect anomalies. Anomalous applications such as a repackaged application that contained malware was able to be detected. It was concluded that, the approach done in the project is viable, however there are still several aspects of the project that could be improved on to give better results.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Final Year Project Seow Wei Yang.pdf
  Restricted Access
3.55 MBAdobe PDFView/Open

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.