Please use this identifier to cite or link to this item:
Title: Effects of expanding universe in the Schrödinger-Newton approach
Authors: Kelvin
Keywords: DRNTU::Science::Physics
Issue Date: 2019
Abstract: The cosmological constant is by far the simplest and most consistent way to model the accelerating expansion of our universe. In this project, we investigate the mass and length scale in which a particle should be superposed so that the effects induced by the cosmological constant dominate the dynamics of the particle in the Schrodinger-Newton approach. Within this framework, we extend the existing Schrodinger-Newton equation by replacing the Newtonian gravitational potential with a potential that includes the effects of self-gravitating interaction and dark energy in the form of the cosmological constant. A spherically symmetric Gaussian wave function is used as our initial condition and its evolution under the Schrodinger-Newton-Lambda equation" is solved numerically. First, we were able to recover most of the Schrodinger-Newton solutions found previously. The investigation on the mass and length scale showed terrestrial required values of approximately 10-20 kg superposed over the distance above 50 m. Unfortunately, the time required to observe the effects of cosmological constant for terrestrial particles turns out to be truly astronomical.
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
  Restricted Access
1.67 MBAdobe PDFView/Open

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.