Please use this identifier to cite or link to this item:
Title: Oxygen plasma and cation tuning in Ni2P for water oxidation
Authors: Lew, Wai Sing
Keywords: DRNTU::Engineering::Materials
Issue Date: 2019
Abstract: With the continual increase demand for renewable sources of energy, hydrogen has been identified to be one of the most promising sources of energy. Oxygen evolution reaction (OER) from water splitting is thermodynamically unfavourable and sluggish in kinetics compared to the other half (hydrogen evolution reaction, HER). A highly efficient and low cost electrocatalyst is therefore in great demand. Herein, we developed an exceptionally efficient OER electrocatalyst by using core nickel(II) phosphide Ni2P via a series of cation tuning and surface engineering. Interestingly, remarkable results have been shown from the theoretical calculations made through modifications of selective doping of Vanadium together with plasma treatment using oxygen, which increases the overall number of available states at Fermi-level and inproves the overall adsorption of OH− in the Ni sites. The performance is further exploited with the use of oxygen plasma treatment which enhances hydrophilicity of KOH solution, resulting in a contact angle of 44.95° down to 16.8°. This is evidenced by a high BET surface area, which is the result of higher active sites available and lower overall charge transfer resistance. Furthermore, results have shown that the synthesised catalyst has an OER overpotentials of 257 mV at current density of 10 mA cm−2 with a Tafel slope of 43.5 mV dec−1 in 1M KOH. The performance is very much similar to that of noble metals. Thus, the presented work opens a new way in overcoming the high cost and scarcity of using noble metals as electrocatalyst.
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Lew WAi Sing FYP Report Finalisedd.pdf
  Restricted Access
3.1 MBAdobe PDFView/Open

Page view(s)

Updated on Nov 30, 2020

Download(s) 10

Updated on Nov 30, 2020

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.