Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/77673
Title: Experimental and numerical study on unsymmetrically-loaded short beam subjected to fire
Authors: Tang, Hwee Sin
Keywords: DRNTU::Engineering::Civil engineering
Issue Date: 2019
Abstract: The risk of shear failure at fire condition has been demonstrate over the years by past fire incidents. However, little attention has been given to the shear capacity of the RC elements as it should be ensured in structural fire design. Most structural fire design codes and guidelines to date for RC elements are not based on shear capacity. For shear fire design, the only provision is recommended by EN 1992-1-2(2004). However, it is not fully verified. Furthermore, no design provision is available for assessing the strength of short beams, at elevated temperatures. When expose to elevated temperatures, shear failure may govern the failure mode of short beams by the combination of thermal induced stress and non-linear stress distribution that affect it. Nonetheless, no publication can be found of short beams subject to fire exposure. Therefore, in the present research program, the structural fire behaviour of short beams will be examined, followed by the utilization of a heat transfer model for simulating the response of short beams. Tests will be conducted to investigate experimentally the effects of a/d ratio, on the structural fire behaviour of short beams. The heat transfer model will be utilised to model the experimental data of short beams when exposed to fires. Besides, a design approach is used to evaluate the capacity of short beams subjected to fires
URI: http://hdl.handle.net/10356/77673
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:CEE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
Final FYP.pdf
  Restricted Access
1.6 MBAdobe PDFView/Open

Page view(s) 50

35
checked on Oct 29, 2020

Download(s) 50

6
checked on Oct 29, 2020

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.