Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/77993
Title: Formation of miniaturized 3D tumour spheroids for drug screening
Authors: Cheah, Cheryl Jia Le
Keywords: DRNTU::Engineering::Materials::Biomaterials
Issue Date: 2019
Abstract: Cancer is one of the most life-threatening diseases and has affected many in the world. Currently, anti-cancer drugs are being tested by in vitro cell- based study and animal testing before drugs can move on to clinical trials. Traditional 2D cell culture is widely used for in vitro study due to the lower cost and simplicity. However, in recent years, 2D cell culture is increasingly reported to have inaccurate and misleading data. This led to an increase interest in developing 3D culture platform for the screening of anti-cancer drugs. Among the 3D cell culture models, multi-cellular spheroids are commonly used as they accurately mimic tumour architecture. There are many existing methods to fabricate multi-cellular spheroids but lacked high throughput and consistency. In this study, co-axial electrospray will be used to fabricate hydrogel spheroids with core-shell structure and its parameters will be optimised in order to obtain the desired size and consistent shape. Effect of voltage, hardening bath, needle size, total flow rate and flow rate ratio will be studied based on the morphology of spheroids and its consistency. With the optimised parameters, MCF-7 and L929 cells will be encapsulated in core and shell compartment respectively to form multi-cellular spheroids as proof of concepts. Cell viability and cellular spheroids formation will be characterized with fluorescence staining.
URI: http://hdl.handle.net/10356/77993
Schools: School of Materials Science and Engineering 
Rights: Nanyang Technological University
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:MSE Student Reports (FYP/IA/PA/PI)

Files in This Item:
File Description SizeFormat 
FYP report 20190404 Final .pdf
  Restricted Access
5.36 MBAdobe PDFView/Open

Page view(s)

362
Updated on Mar 16, 2025

Download(s) 50

39
Updated on Mar 16, 2025

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.