Please use this identifier to cite or link to this item:
Title: Motive imagery scoring based on deep neural network
Authors: Yu, Sicheng
Keywords: DRNTU::Engineering::Electrical and electronic engineering::Electronic systems::Signal processing
Issue Date: 2019
Abstract: The purpose of this study is to develop a method for scoring the motive imageries in text materials. According to Winter’s motive scoring system, there are three different kinds of motive imageries and each of them is given detailed definitions and scoring rules. But it’s difficult and also time-consuming to implement these rules manually. The traditional machine learning methods also have difficulties in extracting features. With the evolution and development of deep learning, deep neural networks have played an important role in data processing. In the study, three different deep learning models, including TextCNN, LSTM and Bidirectional LSTM with attention mechanism, are applied to score the motives. The performances of three models are evaluated, compared, and reported in this thesis.
Fulltext Permission: restricted
Fulltext Availability: With Fulltext
Appears in Collections:EEE Theses

Files in This Item:
File Description SizeFormat 
YU SICHENG dissertation_final_signed.pdf
  Restricted Access
Main article2.33 MBAdobe PDFView/Open

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.