Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/78921
Title: | Visual attention : a study on image sentiment and emotional priority | Authors: | Janani, Govindarajulu Venkatasamy | Keywords: | Engineering::Electrical and electronic engineering | Issue Date: | 2019 | Abstract: | Emotions on the image influences visual perception of the viewers. Stimuli such as laughing faces and crying child attracts human attention than neutral images with no emotional stimuli. This research is to evaluate the relationship between the sentiment of the image and visual attention of the user based on the emotional properties of the image. In an attempt to understand the effects of image attributes on predict, three different convolutional neural network models were designed was implemented in Python with Keras and Tensorflow. This, together with implementations of the saliency map to identify the emotional prioritization on the images. As the results of using different networks was compared and predicted that image set with positive emotions has more attention than images with negative and neutral emotions. The results were also compared to previous attempts to classify the same data to evaluate the method as a whole. | URI: | http://hdl.handle.net/10356/78921 | Schools: | School of Electrical and Electronic Engineering | Fulltext Permission: | restricted | Fulltext Availability: | With Fulltext |
Appears in Collections: | EEE Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Dissertation Thesis_Final.pdf Restricted Access | 1.91 MB | Adobe PDF | View/Open |
Page view(s)
374
Updated on May 7, 2025
Download(s)
12
Updated on May 7, 2025
Google ScholarTM
Check
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.