Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/80041
Title: Ensemble positive unlabeled learning for disease gene identification
Authors: Yang, Peng
Li, Xiaoli
Chua, Hon-Nian
Kwoh, Chee-Keong
Ng, See-Kiong
Keywords: DRNTU::Engineering::Computer science and engineering
Issue Date: 2014
Source: Yang, P., Li, X., Chua, H.-N., Kwoh, C.-K.,& Ng, S.-K. (2014). Ensemble Positive Unlabeled Learning for Disease Gene Identification. PLoS ONE, 9(5), e97079-.
Series/Report no.: PLoS ONE
Abstract: An increasing number of genes have been experimentally confirmed in recent years as causative genes to various human diseases. The newly available knowledge can be exploited by machine learning methods to discover additional unknown genes that are likely to be associated with diseases. In particular, positive unlabeled learning (PU learning) methods, which require only a positive training set P (confirmed disease genes) and an unlabeled set U (the unknown candidate genes) instead of a negative training set N, have been shown to be effective in uncovering new disease genes in the current scenario. Using only a single source of data for prediction can be susceptible to bias due to incompleteness and noise in the genomic data and a single machine learning predictor prone to bias caused by inherent limitations of individual methods. In this paper, we propose an effective PU learning framework that integrates multiple biological data sources and an ensemble of powerful machine learning classifiers for disease gene identification. Our proposed method integrates data from multiple biological sources for training PU learning classifiers. A novel ensemble-based PU learning method EPU is then used to integrate multiple PU learning classifiers to achieve accurate and robust disease gene predictions. Our evaluation experiments across six disease groups showed that EPU achieved significantly better results compared with various state-of-the-art prediction methods as well as ensemble learning classifiers. Through integrating multiple biological data sources for training and the outputs of an ensemble of PU learning classifiers for prediction, we are able to minimize the potential bias and errors in individual data sources and machine learning algorithms to achieve more accurate and robust disease gene predictions. In the future, our EPU method provides an effective framework to integrate the additional biological and computational resources for better disease gene predictions.
URI: https://hdl.handle.net/10356/80041
http://hdl.handle.net/10220/19767
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0097079
Rights: © 2014 Yang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCSE Journal Articles

Files in This Item:
File Description SizeFormat 
Ensemble Positive Unlabeled Learning for Disease Gene Identification.pdf706.46 kBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations

48
checked on Jul 16, 2020

WEB OF SCIENCETM
Citations

36
checked on Oct 23, 2020

Page view(s)

341
checked on Oct 26, 2020

Download(s)

170
checked on Oct 26, 2020

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.