Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/80085
Title: Southwest Pacific Ocean response to a warming world : using Mg/Ca, Zn/Ca, and Mn/Ca in foraminifera to track surface ocean water masses during the last deglaciation
Authors: Carter, Lionel
Bolton, Annette
Smith, Euan
Marr, Julene P.
Bostock, Helen C.
Issue Date: 2013
Source: Marr, J. P., Carter, L., Bostock, H. C., Bolton, A., & Smith, E. (2013). Southwest Pacific Ocean response to a warming world: Using Mg/Ca, Zn/Ca, and Mn/Ca in foraminifera to track surface ocean water masses during the last deglaciation. Paleoceanography, 28, 1–16.
Series/Report no.: Paleoceanography
Abstract: [1] In situ measurements of Mg/Ca, Zn/Ca, Mn/Ca, and Ba/Ca in Globigerinoides bulloides and Globigerina ruber from southwest Pacific core top sites and plankton tow are reported and their potential as paleoproxies is explored. The modern samples cover 20° of latitude from 34°S to 54°S, 7–19°C water temperature, and variable influence of subantarctic (SAW) and subtropical (STW) surface waters. Trace element signatures recorded in core top and plankton tow planktic foraminifera are examined in the context of the chemistry and nutrient profiles of their modern water masses. Our observations suggest that Zn/Ca and Mn/Ca may have the potential to trace SAW and STW. Intraspecies and interspecies offsets identified by in situ measurements of Mg/Ca and Zn/Ca indicate that these ratios may also record changes in thermal and nutrient stratification in the upper ocean. We apply these potential proxies to fossilized foraminifera from the high-resolution core MD97 2121. At the Last Glacial Maximum, surface water Mg/Ca temperature estimates indicate that temperatures were approximately 6–7°C lower than those of the present, accompanied by low levels of Mn/Ca and Zn/Ca and minimal thermal and nutrient stratification. This is consistent with regional dominance of SAW and reduced STW inflow associated with a reduced South Pacific Gyre (SPG). Upper ocean thermal and nutrient stratification collapsed during the Antarctic Cold Reversal, before poleward migration of the zonal winds and ocean fronts invigorated the SPG and increased STW inflow in the early Holocene. Together with reduced winds, this favored a stratified upper ocean from circa 10 ka to the present.
URI: https://hdl.handle.net/10356/80085
http://hdl.handle.net/10220/12162
ISSN: 0883-8305
DOI: 10.1002/palo.20032
Rights: © 2013 American Geophysical Union. This paper was published in Paleoceanography and is made available as an electronic reprint (preprint) with permission of American Geophysical Union. The paper can be found at the following official DOI: [http://dx.doi.org/10.1002/palo.20032]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EOS Journal Articles

Files in This Item:
File Description SizeFormat 
Southwest Pacific Ocean response to a warming world Using Mg Ca, Zn Ca, and Mn Ca.pdf2.25 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 10

18
Updated on Sep 3, 2020

PublonsTM
Citations 10

23
Updated on Mar 4, 2021

Page view(s) 20

527
Updated on Jun 23, 2022

Download(s) 20

280
Updated on Jun 23, 2022

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.