Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/80085
Title: | Southwest Pacific Ocean response to a warming world : using Mg/Ca, Zn/Ca, and Mn/Ca in foraminifera to track surface ocean water masses during the last deglaciation | Authors: | Carter, Lionel Bolton, Annette Smith, Euan Marr, Julene P. Bostock, Helen C. |
Issue Date: | 2013 | Source: | Marr, J. P., Carter, L., Bostock, H. C., Bolton, A., & Smith, E. (2013). Southwest Pacific Ocean response to a warming world: Using Mg/Ca, Zn/Ca, and Mn/Ca in foraminifera to track surface ocean water masses during the last deglaciation. Paleoceanography, 28, 1–16. | Series/Report no.: | Paleoceanography | Abstract: | [1] In situ measurements of Mg/Ca, Zn/Ca, Mn/Ca, and Ba/Ca in Globigerinoides bulloides and Globigerina ruber from southwest Pacific core top sites and plankton tow are reported and their potential as paleoproxies is explored. The modern samples cover 20° of latitude from 34°S to 54°S, 7–19°C water temperature, and variable influence of subantarctic (SAW) and subtropical (STW) surface waters. Trace element signatures recorded in core top and plankton tow planktic foraminifera are examined in the context of the chemistry and nutrient profiles of their modern water masses. Our observations suggest that Zn/Ca and Mn/Ca may have the potential to trace SAW and STW. Intraspecies and interspecies offsets identified by in situ measurements of Mg/Ca and Zn/Ca indicate that these ratios may also record changes in thermal and nutrient stratification in the upper ocean. We apply these potential proxies to fossilized foraminifera from the high-resolution core MD97 2121. At the Last Glacial Maximum, surface water Mg/Ca temperature estimates indicate that temperatures were approximately 6–7°C lower than those of the present, accompanied by low levels of Mn/Ca and Zn/Ca and minimal thermal and nutrient stratification. This is consistent with regional dominance of SAW and reduced STW inflow associated with a reduced South Pacific Gyre (SPG). Upper ocean thermal and nutrient stratification collapsed during the Antarctic Cold Reversal, before poleward migration of the zonal winds and ocean fronts invigorated the SPG and increased STW inflow in the early Holocene. Together with reduced winds, this favored a stratified upper ocean from circa 10 ka to the present. | URI: | https://hdl.handle.net/10356/80085 http://hdl.handle.net/10220/12162 |
ISSN: | 0883-8305 | DOI: | 10.1002/palo.20032 | Rights: | © 2013 American Geophysical Union. This paper was published in Paleoceanography and is made available as an electronic reprint (preprint) with permission of American Geophysical Union. The paper can be found at the following official DOI: [http://dx.doi.org/10.1002/palo.20032]. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | EOS Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Southwest Pacific Ocean response to a warming world Using Mg Ca, Zn Ca, and Mn Ca.pdf | 2.25 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
10
18
Updated on Sep 3, 2020
PublonsTM
Citations
10
23
Updated on Mar 4, 2021
Page view(s) 20
527
Updated on Jun 23, 2022
Download(s) 20
280
Updated on Jun 23, 2022
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.