Please use this identifier to cite or link to this item:
Title: Electronic band structure and optical gain of GaNxBiyAs1−x−y/GaAs pyramidal quantum dots
Authors: Song, Zhi-Gang
Bose, Sumanta
Fan, Wei-Jun
Li, Shu-Shen
Keywords: Photonics
Issue Date: 2016
Source: Song, Z. G., Bose, S., Fan, W. J., & Li, S. S. (2016). Electronic band structure and optical gain of GaNxBiyAs1−x−y/GaAs pyramidal quantum dots. Journal of Applied Physics, 119(14), 143103-.
Series/Report no.: Journal of Applied Physics
Abstract: The electronic band structure and optical gain of GaNxBiyAs1−x−y/GaAs pyramidal quantum dots(QDs) are investigated using the 16-band k ⋅ pmodel with constant strain. The optical gain is calculated taking both homogeneous and inhomogeneous broadenings into consideration. The effective band gap falls as we increase the composition of nitrogen (N) and bismuth (Bi) and with an appropriate choice of composition we can tune the emission wavelength to span within 1.3 μm–1.55 μm, for device application in fiber technology. The extent of this red shift is more profound in QDs compared with bulk material due to quantum confinement. Other factors affecting the emission characteristics include virtual crystal, strain profile, band anticrossing (BAC), and valence band anticrossing (VBAC). The strain profile has a profound impact on the electronic structure, specially the valence band of QDs, which can be determined using the composition distribution of wave functions. All these factors eventually affect the optical gain spectrum. With an increase in QD size, we observe a red shift in the emission energy and emergence of secondary peaks owing to transitions or greater energy compared with the fundamental transition.
ISSN: 0021-8979
DOI: 10.1063/1.4945700
Schools: School of Electrical and Electronic Engineering 
Research Centres: Centre for Micro-/Nano-electronics (NOVITAS) 
Rights: © 2016 AIP Publishing LLC. This paper was published in Journal of Applied Physics and is made available as an electronic reprint (preprint) with permission of AIP Publishing LLC. The published version is available at: []. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles

Files in This Item:
File Description SizeFormat 
Electronic band structure and optical gain.pdf3.71 MBAdobe PDFThumbnail

Citations 20

Updated on Jun 13, 2024

Page view(s) 50

Updated on Jun 18, 2024

Download(s) 20

Updated on Jun 18, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.