Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/80330
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuo, Chun Xianen
dc.contributor.authorXie, Jialeen
dc.contributor.authorYang, Hongbinen
dc.contributor.authorLi, Chang Mingen
dc.date.accessioned2017-03-01T04:31:22Zen
dc.date.accessioned2019-12-06T13:47:19Z-
dc.date.available2017-03-01T04:31:22Zen
dc.date.available2019-12-06T13:47:19Z-
dc.date.issued2015en
dc.identifier.citationGuo, C. X., Xie, J., Yang, H., & Li, C. M. (2015). Au@CdS Core-Shell Nanoparticles-Modified ZnO Nanowires Photoanode for Efficient Photoelectrochemical Water Splitting. Advanced Science, 2(12), 1500135-.en
dc.identifier.issn2198-3844en
dc.identifier.urihttps://hdl.handle.net/10356/80330-
dc.description.abstractHydrogen production from water splitting using solar energy based on photoelectrochemical (PEC) cells has attracted increasing attention because it leaves less of a carbon footprint and has economic superiority of solar and hydrogen energy. Oxide semiconductors such as ZnO possessing high stability against photocorrosion in hole scavenger systems have been widely used to build photoanodes of PEC cells but under visible light their conversion efficiencies with respect to incident-photon-to-current conversion efficiency (IPCE) measured without external bias are still not satisfied. An innovative way is presented here to significantly improve the conversion efficiency of PEC cells by constructing a core–shell structure-based photoanode comprising Au@CdS core–shell nanoparticles on ZnO nanowires (Au@CdS-ZnO). The Au core offers strong electronic interactions with both CdS and ZnO resulting in a unique nanojunction to facilitate charge transfer. The Au@CdS-ZnO PEC cell under 400 nm light irradiation without any applied bias provides an IPCE of 14.8%. Under AM1.5 light illumination with a bias of 0.4 V, the Au@CdS-ZnO PEC cell produces H2 at a constant rate of 11.5 μmol h−1 as long as 10 h. This work provides a fundamental insight to improve the conversion efficiency for visible light in water splitting.en
dc.format.extent6 p.en
dc.language.isoenen
dc.relation.ispartofseriesAdvanced Scienceen
dc.rights© 2015 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.en
dc.subjectcore–shellen
dc.subjectCdSen
dc.titleAu@CdS Core-Shell Nanoparticles-Modified ZnO Nanowires Photoanode for Efficient Photoelectrochemical Water Splittingen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen
dc.identifier.doi10.1002/advs.201500135en
dc.description.versionPublished versionen
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:SCBE Journal Articles
Files in This Item:
File Description SizeFormat 
Au@CdS Core-Shell Nanoparticles-Modified ZnO Nanowires Photoanode.pdf1.22 MBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 5

78
Updated on Mar 28, 2024

Web of ScienceTM
Citations 5

72
Updated on Oct 25, 2023

Page view(s)

405
Updated on Mar 28, 2024

Download(s) 50

106
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.