Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/80394
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMalikiosis, Romanos-Diogenesen
dc.contributor.authorRobins, Sinaien
dc.contributor.authorZhang, Yichien
dc.date.accessioned2016-05-13T07:05:20Zen
dc.date.accessioned2019-12-06T13:48:29Z-
dc.date.available2016-05-13T07:05:20Zen
dc.date.available2019-12-06T13:48:29Z-
dc.date.copyright2016en
dc.date.issued2016en
dc.identifier.citationMalikiosis, R.-D., Robins, S., & Zhang, Y. (2016). Polyhedral Gauss sums, and polytopes with symmetry. Journal of Computational Geometry, 7(1), 149-170.en
dc.identifier.issn1920-180Xen
dc.identifier.urihttps://hdl.handle.net/10356/80394-
dc.description.abstractWe define certain natural finite sums of nn'th roots of unity, called GP(n)GP(n), that are associated to each convex integer polytope PP, and which generalize the classical 11-dimensional Gauss sum G(n)G(n) defined over Z/nZZ/nZ, to higher dimensional abelian groups and integer polytopes. We consider the finite Weyl group WW, generated by the reflections with respect to the coordinate hyperplanes, as well as all permutations of the coordinates; further, we let GG be the group generated by WW as well as all integer translations in ZdZd. We prove that if PP multi-tiles RdRd under the action of GG, then we have the closed form GP(n)=vol(P)G(n)dGP(n)=vol(P)G(n)d. Conversely, we also prove that if PP is a lattice tetrahedron in R3R3, of volume 1/61/6, such that GP(n)=vol(P)G(n)dGP(n)=vol(P)G(n)d, for n∈{1,2,3,4}n∈{1,2,3,4}, then there is an element gg in GG such that g(P)g(P) is the fundamental tetrahedron with vertices (0,0,0)(0,0,0), (1,0,0)(1,0,0), (1,1,0)(1,1,0), (1,1,1)(1,1,1).en
dc.format.extent22 p.en
dc.language.isoenen
dc.relation.ispartofseriesJournal of Computational Geometryen
dc.rights© 2016 The Author(s) (Journal of Computational Geometry). This article is distributed under the terms of the Creative Commons Attribution International License.en
dc.subjectGauss sumen
dc.subjectlatticeen
dc.subjectWeyl groupen
dc.subjectmulti-tilingen
dc.subjectpolyhedronen
dc.subjectsolid angleen
dc.subjectGram relationsen
dc.titlePolyhedral Gauss sums, and polytopes with symmetryen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen
dc.description.versionPublished versionen
dc.identifier.urlhttp://arxiv.org/abs/1508.01876en
dc.identifier.rims191059en
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:SPMS Journal Articles
Files in This Item:
File Description SizeFormat 
231-1050-1-PB.pdf521.06 kBAdobe PDFThumbnail
View/Open

Page view(s)

381
Updated on Jul 14, 2024

Download(s) 50

89
Updated on Jul 14, 2024

Google ScholarTM

Check

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.