Please use this identifier to cite or link to this item:
Title: Plasma-derived extracellular vesicles contain predictive biomarkers and potential therapeutic targets for myocardial ischemic (MI) injury
Authors: Cheow, Esther Sok Hwee
Cheng, Woo Chin
Lee, Chuen Neng
de Kleijn, Dominique
Sorokin, Vitaly
Sze, Siu Kwan
Keywords: Apolipoprotein
DRNTU::Science::Biological sciences
Issue Date: 2016
Source: Cheow, E. S. H., Cheng, W. C., Lee, C. N., de Kleijn, D., Sorokin, V., & Sze, S. K. (2016). Plasma-derived Extracellular Vesicles Contain Predictive Biomarkers and Potential Therapeutic Targets for Myocardial Ischemic (MI) Injury. Molecular & Cellular Proteomics, 15(8), 2628-2640. doi:10.1074/mcp.M115.055731
Series/Report no.: Molecular & Cellular Proteomics
Abstract: Myocardial infarction (MI) triggers a potent inflammatory response via the release of circulatory mediators, including extracellular vesicles (EVs) by damaged cardiac cells, necessary for myocardial healing. Timely repression of inflammatory response are critical to prevent and minimize cardiac tissue injuries, nonetheless, progression in this aspect remains challenging. The ability of EVs to trigger a functional response upon delivery of carried bioactive cargos, have made them clinically attractive diagnostic biomarkers and vectors for therapeutic interventions. Using label-free quantitative proteomics approach, we compared the protein cargo of plasma EVs between patients with MI and from patients with stable angina (NMI). We report, for the first time, the proteomics profiling on 252 EV proteins that were modulated with >1.2-fold after MI. We identified six up-regulated biomarkers with potential for clinical applications; these reflected post-infarct pathways of complement activation (Complement C1q subcomponent subunit A (C1QA), 3.23-fold change, p = 0.012; Complement C5 (C5), 1.27-fold change, p = 0.087), lipoprotein metabolism (Apoliporotein D (APOD), 1.86-fold change, p = 0.033; Apolipoprotein C-III (APOCC3), 2.63-fold change, p = 0.029) and platelet activation (Platelet glycoprotein Ib alpha chain (GP1BA), 9.18-fold change, p < 0.0001; Platelet basic protein (PPBP), 4.72-fold change, p = 0.027). The data have been deposited to the ProteomeXchange with identifier PXD002950. This novel biomarker panel was validated in 43 patients using antibody-based assays (C1QA (p = 0.005); C5 (p = 0.0047), APOD (p = 0.0267); APOC3 (p = 0.0064); GP1BA (p = 0.0031); PPBP (p = 0.0465)). We further present that EV-derived fibrinogen components were paradoxically down-regulated in MI, suggesting that a compensatory mechanism may suppress post-infarct coagulation pathways, indicating potential for therapeutic targeting of this mechanism in MI. Taken together, these data demonstrated that plasma EVs contain novel diagnostic biomarkers and therapeutic targets that can be further developed for clinical use to benefit patients with coronary artery diseases (CADs).
ISSN: 1535-9476
DOI: 10.1074/mcp.M115.055731
Schools: School of Biological Sciences 
Rights: © 2016 American Society for Biochemistry and Molecular Biology (ASBMB). This paper was published in Molecular & Cellular Proteomics and is made available as an electronic reprint (preprint) with permission of American Society for Biochemistry and Molecular Biology (ASBMB). The published version is available at: []. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SBS Journal Articles

Citations 5

Updated on Jun 12, 2024

Web of ScienceTM
Citations 5

Updated on Oct 30, 2023

Page view(s) 50

Updated on Jun 16, 2024

Download(s) 50

Updated on Jun 16, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.