Please use this identifier to cite or link to this item:
Title: Magnetic field and in situ stress dependence of elastic behavior in EuTiO 3 from resonant ultrasound spectroscopy
Authors: Schiemer, Jason
Spalek, Leszek J.
Saxena, Siddharth S.
Panagopoulos, Christos
Katsufuji, Takuro
Bussmann-Holder, Annette
Köhler, Jürgen
Carpenter, Michael A.
Keywords: In Situ Stress
Resonant Ultrasound Spectroscopy
Issue Date: 2016
Source: Schiemer, J., Spalek, L. J., Saxena, S. S., Panagopoulos, C., Katsufuji, T., Bussmann-Holder, A., . . . Carpenter, M. A. (2016). Magnetic field and in situ stress dependence of elastic behavior in EuTiO3 from resonant ultrasound spectroscopy. Physical Review B, 93(5), 054108-. doi:10.1103/PhysRevB.93.054108
Series/Report no.: Physical Review B
Abstract: Magnetoelectric coupling phenomena in EuTiO3 are of considerable fundamental interest and are also understood to be key to reported multiferroic behavior in strained films, which exhibit distinctly different properties to the bulk. Here, the magnetoelastic coupling of EuTiO3 is investigated by resonant ultrasound spectroscopy with in situ applied magnetic field and stress as a function of temperature ranging from temperatures above the structural transition temperature Ts to below the antiferromagnetic ordering temperature Tn. One single crystal and two polycrystalline samples are investigated and compared to each other. Both paramagnetic and diamagnetic transducer carriers are used, allowing an examination of the effect of both stress and magnetic field on the behavior of the sample. The properties are reported in constant field/variable temperature and in constant temperature/variable field mode where substantial differences between both data sets are observed. In addition, elastic and magnetic poling at high fields and stresses at low temperature has been performed in order to trace the history dependence of the elastic constants. Four different temperature regions are identified, characterized by unusual elastic responses. The low-temperature phase diagram has been explored and found to exhibit rich complexity. The data evidence a considerable relaxation of elastic constants at high temperatures, but with little effect from magnetic field alone above 20 K, in addition to the known low-temperature coupling.
ISSN: 2469-9950
DOI: 10.1103/PhysRevB.93.054108
Schools: School of Physical and Mathematical Sciences 
Rights: © 2016 American Physical Society (APS). This paper was published in Physical Review B and is made available as an electronic reprint (preprint) with permission of American Physical Society (APS). The published version is available at: []. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Journal Articles

Files in This Item:
File Description SizeFormat 
Magnetic field and in situ stress dependence of elastic behavior in.pdf5.58 MBAdobe PDFThumbnail

Citations 20

Updated on May 31, 2024

Web of ScienceTM
Citations 10

Updated on Oct 29, 2023

Page view(s)

Updated on Jun 18, 2024

Download(s) 50

Updated on Jun 18, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.