Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/80487
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVenkatraman, Subbu S.en
dc.contributor.authorSteele, Terry W. J.en
dc.contributor.authorHuang, Charlotte L.en
dc.contributor.authorKumar, Saranyaen
dc.contributor.authorIrvine, Scotten
dc.contributor.authorBoey, Freddy Yin Chiangen
dc.contributor.authorLoo, Joachim Say Chyeen
dc.date.accessioned2017-03-13T07:49:17Zen
dc.date.accessioned2019-12-06T13:50:39Z-
dc.date.available2017-03-13T07:49:17Zen
dc.date.available2019-12-06T13:50:39Z-
dc.date.issued2012en
dc.identifier.citationSteele, T. W. J., Huang, C. L., Kumar, S., Irvine, S., Boey, F. Y. C., Loo, J. S. C., et al. (2012). Novel gradient casting method provides high-throughput assessment of blended polyester poly(lactic-co-glycolic acid) thin films for parameter optimization. Acta Biomaterialia, 8(6), 2263-2270.en
dc.identifier.issn1742-7061en
dc.identifier.urihttps://hdl.handle.net/10356/80487-
dc.description.abstractPure polymer films cannot meet the diverse range of controlled release and material properties demanded for the fabrication of medical implants or other devices. Additives are added to modulate and optimize thin films for the desired qualities. To characterize the property trends that depend on additive concentration, an assay was designed which involved casting a single polyester poly(lactic-co-glycolic acid) (PLGA) film that blends a linear gradient of any PLGA-soluble additive desired. Four gradient PLGA films were produced by blending polyethylene glycol or the more hydrophobic polypropylene glycol. The films were made using a custom glass gradient maker in conjunction with a 180 cm film applicator. These films were characterized in terms of thickness, percent additive, total polymer (PLGA + additive), and controlled drug release using drug-like fluorescent molecules such as coumarin 6 (COU) or fluorescein diacetate (FDAc). Material properties of elongation and modulus were also accessed. Linear gradients of additives were readily generated, with phase separation being the limiting factor. Additive concentration had a Pearson’s correlation factor (R) of >0.93 with respect to the per cent total release after 30 days for all gradients characterized. Release of COU had a near zero-order release over the same time period, suggesting that coumarin analogs may be suitable for use in PLGA/polyethylene glycol or PLGA/polypropylene glycol matrices, with each having unique material properties while allowing tuneable drug release. The gradient casting method described has considerable potential in offering higher throughput for optimizing film or coating material properties for medical implants or other devices.en
dc.format.extent22 p.en
dc.language.isoenen
dc.relation.ispartofseriesActa Biomaterialiaen
dc.rights© 2012 Acta Materialia Inc. (published by Elsevier Ltd.). This is the author created version of a work that has been peer reviewed and accepted for publication in Acta Biomaterialia, published by Elsevier Ltd. on behalf of Acta Materialia Inc.. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document.  The published version is available at: [http://dx.doi.org/10.1016/j.actbio.2012.01.014].en
dc.subjectPLGAen
dc.subjectGradientsen
dc.titleNovel gradient casting method provides high-throughput assessment of blended polyester poly(lactic-co-glycolic acid) thin films for parameter optimizationen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Materials Science & Engineeringen
dc.identifier.doi10.1016/j.actbio.2012.01.014en
dc.description.versionAccepted versionen
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:MSE Journal Articles

SCOPUSTM   
Citations 20

20
Updated on Jul 10, 2024

Web of ScienceTM
Citations 20

18
Updated on Oct 24, 2023

Page view(s) 50

521
Updated on Jul 13, 2024

Download(s) 20

198
Updated on Jul 13, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.