Please use this identifier to cite or link to this item:
Title: Self-assembled photoadditives in polyester films allow stop and go chemical release
Authors: Cheng, Ting
O'Rorke, Richard
Ortiz, Raphael Francois
Yan, Tay Yee
Hemmer, Eva
Vetrone, Fiorenzo
Marks, Robert S.
Steele, Terry W. J.
Keywords: PLLA
controlled release
Issue Date: 2017
Source: Cheng, T., O'Rorke, R., Ortiz, R. F., Yan, T. Y., Hemmer, E., Vetrone, F., et al. (2017). Self-assembled photoadditives in polyester films allow stop and go chemical release. Acta Biomaterialia, in press.
Series/Report no.: Acta Biomaterialia
Abstract: Near-infrared (NIR) triggered chemical delivery allows on-demand release with the advantage of external tissue stimulation. Bioresorbable polyester poly-L-lactic acid (PLLA) was compounded with photoadditives of neat zinc oxide (ZnO) nanoparticles and 980  365 nm LiYF4:Tm3+, Yb3+ upconverting nanoparticles (UCNP). Subsequently, neat ZnO and UCNP blended PLLA films of sub-50 m thickness were knife casted with a hydrophobic small molecule drug mimic, fluorescein diacetate. The PLLA films displayed a 500 times increase in fluorescein diacetate release from the 50 mW NIR irradiated PLLA/photoadditive film compared to non-irradiated PLLA control films. Larger ratios of UCNP/neat ZnO increased photocatalysis efficiency at low NIR duty cycles. The synergistic increase results from the self-assembled photoadditives of neat zinc oxide and upconverting nanoparticles (UCNPs), as seen in transmission electron microscopy. Colloidal ZnO, which does not self-assemble with UCNPs, had less than half the release kinetics of the self-assembled PLLA films under similar conditions, advocating Förster resonance energy transfer as the mechanism responsible for the synergistic increase. Alternative to intensity modulation, pulse width modulation (duty cycles from 0.1 to 1) of the low intensity 50 mW NIR laser diode allowed tailorable release rates from 0.01 to 1.4 % per day. With the low intensity NIR activation, tailorable release rates, and favourable biocompatibility of the constituents, implanted PLLA photoadditive thin films could allow feedback mediated chemical delivery.
ISSN: 1742-7061
DOI: 10.1016/j.actbio.2017.03.021
Schools: School of Materials Science & Engineering 
Rights: © 2017 Acta Materialia Inc. This is the author created version of a work that has been peer reviewed and accepted for publication in Acta Biomaterialia, published by Elsevier on behalf of Acta Materialia Inc.. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document.  The published version is available at: [].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
Self-assembled photoadditives in polyester films allow stop and go chemical release.pdf2.52 MBAdobe PDFThumbnail

Citations 20

Updated on Jun 9, 2024

Web of ScienceTM
Citations 20

Updated on Oct 31, 2023

Page view(s) 20

Updated on Jun 15, 2024

Download(s) 20

Updated on Jun 15, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.