Please use this identifier to cite or link to this item:
Title: One-step hydrothermal synthesis of rare earth/W-codoped VO2 nanoparticles: Reduced phase transition temperature and improved thermochromic properties
Authors: Wang, Ning
Goh, Qing Sheng
Lee, Pei Lin
Magdassi, Shlomo
Long, Yi
Keywords: Vanadium dioxide
Solar modulation
Issue Date: 2017
Source: Wang, N., Goh, Q. S., Lee, P. L., Magdassi, S., & Long, Y. (2017). One-step hydrothermal synthesis of rare earth/W-codoped VO2 nanoparticles: Reduced phase transition temperature and improved thermochromic properties. Journal of Alloys and Compounds, 711, 222-228.
Series/Report no.: Journal of Alloys and Compounds
Abstract: As a reversible thermochromic material, vanadium dioxide (VO2) is a promising candidate for smart window applications. The trade-off between the integrated visible transmission (Tlum) and the solar modulating ability (ΔTsol), as well as the high phase transition temperature (τc~68 °C) are regarded as the main obstacles for practical applications of pure VO2 nanomaterials. The combination of both high τc reducing efficiency of W and improving Tlum/ΔTsol properties of RE (rare earth: Eu, Tb), herein lies the purpose of RE/W-codoping to enhance the thermochromic performance. The RE/W-codoped VO2 nanoparticles were synthesized under hydrothermal conditions, and exhibited grain size of less than 100 nm. The smart window which was fabricated by coating RE/W-codoped VO2 nanoparticles onto glass, exhibits a thermochromic performance with a combination Tlum= 40%, ΔTsol= 6.3%, τc= 40.8 °C or Tlum= 63%, ΔTsol= 3.6%, τc= 31.9 °C, indicating the largely reduced absorption compared with the single W doping. Under the RE/W-codoping conditions, it was found that the ionic radius of the RE3+ cations controlled the crystallinity of the VO2 particles and the electron/hole carrier counteraction as well as the competition between the strain and the hole carrier played a vital role in modulating the τc of the VO2 products. The findings should be meaningful for investigating the codoping mechanisms for VO2 nanomaterials.
ISSN: 0925-8388
DOI: 10.1016/j.jallcom.2017.04.012
Schools: School of Materials Science & Engineering 
Rights: © 2017 Elsevier B. V. This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of Alloys and Compounds, Elsevier. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MSE Journal Articles

Files in This Item:
File Description SizeFormat 
revised manuscript-2.pdf1.88 MBAdobe PDFThumbnail

Citations 5

Updated on Jun 22, 2024

Web of ScienceTM
Citations 5

Updated on Oct 25, 2023

Page view(s)

Updated on Jun 24, 2024

Download(s) 20

Updated on Jun 24, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.