Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/80825
Title: H-Man: A Planar, H-shape Cabled Differential Robotic Manipulandum for Experiments on Human Motor Control
Authors: Campolo, Domenico
Tommasino, Paolo
Gamage, Kumudu
Klein, Julius
Hughes, Charmayne Mary Lee
Masia, Lorenzo
Keywords: Human motor control
Motor adaptation
H-Man
Robotic manipulanda
Issue Date: 2014
Source: Campolo, D., Tommasino, P., Gamage, K., Klein, J., Hughes, C. M. L., & Masia, L. (2014). H-Man: A planar, H-shape cabled differential robotic manipulandum for experiments on human motor control. Journal of Neuroscience Methods, 235, 285-297.
Series/Report no.: Journal of Neuroscience Methods
Abstract: In the last decades more robotic manipulanda have been employed to investigate the effect of haptic environments on motor learning and rehabilitation. However, implementing complex haptic renderings can be challenging from technological and control perspectives. We propose a novel robot (H-Man) characterized by a mechanical design based on cabled differential transmission providing advantages over current robotic technology. The H-Man transmission translates to extremely simplified kinematics and homogenous dynamic properties, offering the possibility to generate haptic channels by passively blocking the mechanics, and eliminating stability concerns. We report results of experiments characterizing the performance of the device (haptic bandwidth, Z-width, and perceived impedance). We also present the results of a study investigating the influence of haptic channel compliance on motor learning in healthy individuals, which highlights the effects of channel compliance in enhancing proprioceptive information. The generation of haptic channels to study motor redundancy is not easy for actual robots because of the needs of powerful actuation and complex real-time control implementation. The mechanical design of H-Man affords the possibility to promptly create haptic channels by mechanical stoppers (on one of the motors) without compromising the superior backdriveability and high isotropic manipulability. This paper presents a novel robotic device for motor control studies and robotic rehabilitation. The hardware was designed with specific emphasis on the mechanics that result in a system that is easy to control, homogeneous, and is intrinsically safe for use.
URI: https://hdl.handle.net/10356/80825
http://hdl.handle.net/10220/38896
ISSN: 0165-0270
DOI: 10.1016/j.jneumeth.2014.07.003
Rights: © 2014 Elsevier B.V. All rights reserved. This is the author created version of a work that has been peer reviewed and accepted for publication by Journal of Neuroscience Methods, Elsevier B.V. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1016/j.jneumeth.2014.07.003].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:MAE Journal Articles

Files in This Item:
File Description SizeFormat 
2013 H-Man_v21.pdf2.23 MBAdobe PDFThumbnail
View/Open

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.