Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChoi, Jae-Hyeoken
dc.contributor.authorKim, Seong-Ohen
dc.contributor.authorLinardy, Ericen
dc.contributor.authorDreaden, Erik C.en
dc.contributor.authorZhdanov, Vladimir P.en
dc.contributor.authorHammond, Paula T.en
dc.contributor.authorCho, Nam-Joonen
dc.identifier.citationChoi, J.-H., Kim, S.-O., Linardy, E., Dreaden, E. C., Zhdanov, V. P., Hammond, P. T., et al. (2015). Adsorption of hyaluronic acid on solid supports: Role of pH and surface chemistry in thin film self-assembly. Journal of Colloid and Interface Science, 448, 197-207.en
dc.description.abstractOwing to its biocompatibility, resistance to biofouling, and desirable physicochemical and biological properties, hyaluronic acid (HA) has been widely used to modify the surface of various materials. The role of various physicochemical factors in HA adsorption remains, however, to be clarified. Herein, we employed quartz crystal microbalance with dissipation (QCM-D) in order to investigate HA adsorption at different pH conditions onto three substrates—silicon oxide, amine-terminated self-assembled monolayer (SAM) on gold, and carboxylic acid-terminated SAM on gold. The QCM-D experiments indicated specific pH conditions where either strong or weak HA adsorption occurs. The morphology of the adsorbed HA layers was investigated by atomic force microscopy (AFM), and we identified that strong HA adsorption produced a complete, homogenous and smooth HA layer, while weak HA adsorption resulted in rough and inhomogeneous HA layers. The observed specifics of the kinetics of HA adsorption, including a short initial linear phase and subsequent long non-linear phase, were described by using a mean-field kinetic model taking HA diffusion limitations and reconfiguration in the adsorbed state into account. The findings extend the physicochemical background of design strategies for improving the use of passive HA adsorption for surface modification applications.en
dc.description.sponsorshipNRF (Natl Research Foundation, S’pore)en
dc.description.sponsorshipNMRC (Natl Medical Research Council, S’pore)en
dc.relation.ispartofseriesJournal of Colloid and Interface Scienceen
dc.rights© 2015 Elsevier Inc.en
dc.subjectHyaluronic aciden
dc.subjectThin filmsen
dc.subjectAdsorption kineticsen
dc.subjectQuartz crystal microbalanceen
dc.subjectAtomic force microscopyen
dc.subjectpH conditionen
dc.titleAdsorption of hyaluronic acid on solid supports: Role of pH and surface chemistry in thin film self-assemblyen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Chemical and Biomedical Engineeringen
dc.contributor.schoolSchool of Materials Science & Engineeringen
dc.contributor.researchCentre for Biomimetic Sensor Scienceen
item.fulltextNo Fulltext-
Appears in Collections:MSE Journal Articles
SCBE Journal Articles

Citations 20

Updated on Jun 18, 2020

Citations 10

Updated on Mar 4, 2021

Page view(s) 50

Updated on May 21, 2022

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.