Please use this identifier to cite or link to this item:
https://hdl.handle.net/10356/81102
Title: | Duplex stem-loop-containing quadruplex motifs in the human genome: a combined genomic and structural study | Authors: | Lim, Kah Wai Jenjaroenpun, Piroon Low, Zhen Jie Khong, Zi Jian Ng, Yi Siang Kuznetsov, Vladimir Andreevich Phan, Anh Tuan |
Keywords: | Physics & Applied Physics Biological Sciences |
Issue Date: | 2015 | Source: | Lim, K. W., Jenjaroenpun, P., Low, Z. J., Khong, Z. J., Ng, Y. S., Kuznetsov, V. A., et al. (2015). Duplex stem-loop-containing quadruplex motifs in the human genome: a combined genomic and structural study. Nucleic Acids Research, 43(11), 5630-5646. | Series/Report no.: | Nucleic Acids Research | Abstract: | Duplex stem-loops and four-stranded G-quadruplexes have been implicated in (patho)biological processes. Overlap of stem-loop- and quadruplex-forming sequences could give rise to quadruplex–duplex hybrids (QDH), which combine features of both structural forms and could exhibit unique properties. Here, we present a combined genomic and structural study of stem-loop-containing quadruplex sequences (SLQS) in the human genome. Based on a maximum loop length of 20 nt, our survey identified 80 307 SLQS, embedded within 60 172 unique clusters. Our analysis suggested that these should cover close to half of total SLQS in the entire genome. Among these, 48 508 SLQS were strand-specifically located in genic/promoter regions, with the majority of genes displaying a low number of SLQS. Notably, genes containing abundant SLQS clusters were strongly associated with brain tissues. Enrichment analysis of SLQS-positive genes and mapping of SLQS onto transcriptional/mutagenesis hotspots and cancer-associated genes, provided a statistical framework supporting the biological involvements of SLQS. In vitro formation of diverse QDH by selective SLQS hits were successfully verified by nuclear magnetic resonance spectroscopy. Folding topologies of two SLQS were elucidated in detail. We also demonstrated that sequence changes at mutation/single-nucleotide polymorphism loci could affect the structural conformations adopted by SLQS. Thus, our predicted SLQS offer novel insights into the potential involvement of QDH in diverse (patho)biological processes and could represent novel regulatory signals. | URI: | https://hdl.handle.net/10356/81102 http://hdl.handle.net/10220/39095 |
ISSN: | 0305-1048 | DOI: | 10.1093/nar/gkv355 | Schools: | School of Biological Sciences School of Physical and Mathematical Sciences |
Rights: | © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. | Fulltext Permission: | open | Fulltext Availability: | With Fulltext |
Appears in Collections: | SBS Journal Articles SPMS Journal Articles |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Duplex stem-loop-containing quadruplex motifs in the human genome a combined genomic and structural study.pdf | 4.73 MB | Adobe PDF | ![]() View/Open |
SCOPUSTM
Citations
10
47
Updated on Sep 30, 2023
Web of ScienceTM
Citations
10
47
Updated on Sep 30, 2023
Page view(s) 50
419
Updated on Sep 29, 2023
Download(s) 20
251
Updated on Sep 29, 2023
Google ScholarTM
Check
Altmetric
Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.