Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/81181
Title: Nuclear receptor Nurr1 agonists enhance its dual functions and improve behavioral deficits in an animal model of Parkinson’s disease
Authors: Kim, Chun-Hyung
Han, Baek-Soo
Moon, Jisook
Kim, Deog-Joong
Shin, Joon
Rajan, Sreekanth
Nguyen, Quoc Toan
Sohn, Mijin
Kim, Won-Gon
Han, Minjoon
Jeong, Inhye
Kim, Kyoung-Shim
Lee, Eun-Hye
Tu, Yupeng
Naffin-Olivos, Jacqueline L.
Park, Chang-Hwan
Ringe, Dagmar
Yoon, Ho Sup
Petsko, Gregory A.
Kim, Kwang-Soo
Keywords: NR4A2
Nurr1
Parkinson’s disease
Agonist
Drug target
Issue Date: 2015
Source: Kim, C.-H., Han, B.-S., Moon, J., Kim, D.-J., Shin, J., Rajan, S., et al. (2015). Nuclear receptor Nurr1 agonists enhance its dual functions and improve behavioral deficits in an animal model of Parkinson’s disease. Proceedings of the National Academy of Sciences, 112(28), 8756-8761.
Series/Report no.: Proceedings of the National Academy of Sciences of the United States of America
Abstract: Parkinson’s disease (PD), primarily caused by selective degeneration of midbrain dopamine (mDA) neurons, is the most prevalent movement disorder, affecting 1–2% of the global population over the age of 65. Currently available pharmacological treatments are largely symptomatic and lose their efficacy over time with accompanying severe side effects such as dyskinesia. Thus, there is an unmet clinical need to develop mechanism-based and/or disease-modifying treatments. Based on the unique dual role of the nuclear orphan receptor Nurr1 for development and maintenance of mDA neurons and their protection from inflammation-induced death, we hypothesize that Nurr1 can be a molecular target for neuroprotective therapeutic development for PD. Here we show successful identification of Nurr1 agonists sharing an identical chemical scaffold, 4-amino-7-chloroquinoline, suggesting a critical structure–activity relationship. In particular, we found that two antimalarial drugs, amodiaquine and chloroquine stimulate the transcriptional function of Nurr1 through physical interaction with its ligand binding domain (LBD). Remarkably, these compounds were able to enhance the contrasting dual functions of Nurr1 by further increasing transcriptional activation of mDA-specific genes and further enhancing transrepression of neurotoxic proinflammatory gene expression in microglia. Importantly, these compounds significantly improved behavioral deficits in 6-hydroxydopamine lesioned rat model of PD without any detectable signs of dyskinesia-like behavior. These findings offer proof of principle that small molecules targeting the Nurr1 LBD can be used as a mechanism-based and neuroprotective strategy for PD.
URI: https://hdl.handle.net/10356/81181
http://hdl.handle.net/10220/39159
DOI: 10.1073/pnas.1509742112
Rights: © 2015 The Authors (Published by National Academy of Sciences).
Fulltext Permission: none
Fulltext Availability: No Fulltext
Appears in Collections:SBS Journal Articles

SCOPUSTM   
Citations 20

71
checked on Sep 5, 2020

WEB OF SCIENCETM
Citations 50

72
checked on Oct 16, 2020

Page view(s) 50

246
checked on Oct 21, 2020

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.