Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/81269
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSu, Ruien
dc.contributor.authorWang, Junen
dc.contributor.authorZhao, Jiaxinen
dc.contributor.authorXing, Junen
dc.contributor.authorZhao, Weijieen
dc.contributor.authorDiederichs, Caroleen
dc.contributor.authorXiong, Qihuaen
dc.contributor.authorLiew, Timothy Chi Hinen
dc.date.accessioned2019-01-11T04:20:05Zen
dc.date.accessioned2019-12-06T14:27:01Z-
dc.date.available2019-01-11T04:20:05Zen
dc.date.available2019-12-06T14:27:01Z-
dc.date.issued2018en
dc.identifier.citationSu, R., Wang, J., Zhao, J., Xing, J., Zhao, W., Diederichs, C., . . . Xiong, Q. (2018). Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Science Advances, 4(10), eaau0244-. doi:10.1126/sciadv.aau0244en
dc.identifier.urihttps://hdl.handle.net/10356/81269-
dc.description.abstractNovel technological applications significantly favor alternatives to electrons toward constructing low power–consuming, high-speed all-optical integrated optoelectronic devices. Polariton condensates, exhibiting high-speed coherent propagation and spin-based behavior, attract considerable interest for implementing the basic elements of integrated optoelectronic devices: switching, transport, and logic. However, the implementation of this coherent polariton condensate flow is typically limited to cryogenic temperatures, constrained by small exciton binding energy in most semiconductor microcavities. Here, we demonstrate the capability of long-range nonresonantly excited polariton condensate flow at room temperature in a one-dimensional all-inorganic cesium lead bromide (CsPbBr3) perovskite microwire microcavity. The polariton condensate exhibits high-speed propagation over macroscopic distances of 60 μm while still preserving the long-range off-diagonal order. Our findings pave the way for using coherent polariton condensate flow for all-optical integrated logic circuits and polaritonic devices operating at room temperature.en
dc.description.sponsorshipNRF (Natl Research Foundation, S’pore)en
dc.description.sponsorshipMOE (Min. of Education, S’pore)en
dc.format.extent7 p.en
dc.language.isoenen
dc.relation.ispartofseriesScience Advancesen
dc.rights© 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC).en
dc.subjectPolariton Condensatesen
dc.subjectExciton Polaritonen
dc.subjectDRNTU::Science::Physicsen
dc.titleRoom temperature long-range coherent exciton polariton condensate flow in lead halide perovskitesen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Electrical and Electronic Engineeringen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen
dc.contributor.organizationMajuLab, CNRS-UNS-NUS-NTU International Joint Research Uniten
dc.contributor.researchNanoelectronics Centre of Excellenceen
dc.identifier.doi10.1126/sciadv.aau0244en
dc.description.versionPublished versionen
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:EEE Journal Articles
SPMS Journal Articles

SCOPUSTM   
Citations 5

42
Updated on Mar 3, 2021

PublonsTM
Citations 5

47
Updated on Mar 7, 2021

Page view(s)

99
Updated on Apr 17, 2021

Download(s) 50

31
Updated on Apr 17, 2021

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.