Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/81323
Title: Nanowire Lasers
Authors: Larrue, A.
Wilhelm, C.
Couteau, Christophe
Soci, Cesare
Keywords: Physics and Applied Physics
Issue Date: 2015
Source: Couteau, C., Larrue, A., Wilhelm, C., & Soci, C. (2015). Nanowire Lasers. Nanophotonics, 4(1), 90-107.
Series/Report no.: Nanophotonics
Abstract: We review principles and trends in the use of semiconductor nanowires as gain media for stimulated emission and lasing. Semiconductor nanowires have recently been widely studied for use in integrated optoelectronic devices, such as light-emitting diodes (LEDs), solar cells, and transistors. Intensive research has also been conducted in the use of nanowires for subwavelength laser systems that take advantage of their quasione- dimensional (1D) nature, flexibility in material choice and combination, and intrinsic optoelectronic properties. First, we provide an overview on using quasi-1D nanowire systems to realize subwavelength lasers with efficient, directional, and low-threshold emission. We then describe the state of the art for nanowire lasers in terms of materials, geometry, andwavelength tunability.Next,we present the basics of lasing in semiconductor nanowires, define the key parameters for stimulated emission, and introduce the properties of nanowires. We then review advanced nanowire laser designs from the literature. Finally, we present interesting perspectives for low-threshold nanoscale light sources and optical interconnects. We intend to illustrate the potential of nanolasers inmany applications, such as nanophotonic devices that integrate electronics and photonics for next-generation optoelectronic devices. For instance, these building blocks for nanoscale photonics can be used for data storage and biomedical applications when coupled to on-chip characterization tools. These nanoscale monochromatic laser light sources promise breakthroughs in nanophotonics, as they can operate at room temperature, can potentially be electrically driven, and can yield a better understanding of intrinsic nanomaterial properties and surface-state effects in lowdimensional semiconductor systems.
URI: https://hdl.handle.net/10356/81323
http://hdl.handle.net/10220/39233
ISSN: 2192-8614
DOI: 10.1515/nanoph-2015-0005,
Schools: School of Physical and Mathematical Sciences 
Research Centres: Centre for Disruptive Photonic Technologies (CDPT) 
Rights: © 2015 C. Couteau et al., licensee De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Journal Articles

Files in This Item:
File Description SizeFormat 
Nanowire Lasers.pdf970.53 kBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 5

70
Updated on Feb 16, 2024

Page view(s) 50

583
Updated on Mar 28, 2024

Download(s) 20

173
Updated on Mar 28, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.