Please use this identifier to cite or link to this item:
Title: Multi-variable approach to determine treatment efficiency of wetland: size effect and electro-kinetic effects
Authors: Gupta, Sandeep
Singh, Rattandeep
Chakraborty, Prodyut Ranjan
Sharma, R.K.
Soboyejo, A.B.O.
Wei, Xiaohua
Plappally, Anand
Keywords: Multi-parameter approach
Acrylic model
Issue Date: 2014
Source: Gupta, S., Singh, R., Chakraborty, P. R., Sharma, R. K., Soboyejo, A.B O., Wei, X., et al. (2014). Multi-variable approach to determine treatment efficiency of wetland: size effect and electro-kinetic effects. Desalination and Water Treatment, 55(13), 3576-3586.
Series/Report no.: Desalination and Water Treatment
Abstract: Empirical stochastic multi-variable models for prediction of treatment efficiency of wetlands are presented in this article. Wetlands of seven different shapes are visualized using tracer studies. Two different variants of experiments are carried out. Numerous flow rate variations are performed keeping surface area of the wetland constant. The experiment is also carried out with a variation in volume of the wetland which helps to study the effect of flow height on the hydrodynamics within the wetland. A multi-variable model for treatment efficiency in terms of change in tracer concentration as a function of shape, volumetric height of water within the wetland, time, and mass flow rate is considered. Further, another set of experiments is performed studying the treatment efficiency in terms of electro-kinetic parameters. This involves measuring the pH, turbidity, temperature, electrical conductivity, total dissolved salts at inlet and outlet and residence time with varying flow rate, and height of water for the seven different wetland models under study. The electro-kinetic parameters changes due to difference in concentration of the tracer dye which simulates impurities. In this case, treatment efficiency is expressed as a function of the above-discussed electro-kinetic variables, time variation, water height, as well as variation in the mass flow rate. The stochastic multi-parameter models, thus, empirically derived in the above two cases have high coefficient of determination. The models thus derived may be used as a tool for quick analysis of treatment efficiency of any shape and size of a three-dimensional wetland.
ISSN: 1944-3994
DOI: 10.1080/19443994.2014.958288
Schools: School of Civil and Environmental Engineering 
Rights: © 2015 Balaban Publishers – Desalination Publications. This paper was published in Desalination and Water Treatment and is made available as an electronic reprint (preprint) with permission of Balaban Publishers – Desalination Publications. The published version is available at: []. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:CEE Journal Articles

Files in This Item:
File Description SizeFormat 
Multi-variable approach to determine treatment efficiency of wetland.pdf716.59 kBAdobe PDFThumbnail

Citations 50

Updated on Sep 1, 2023

Page view(s)

Updated on Sep 23, 2023

Download(s) 20

Updated on Sep 23, 2023

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.