Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/81890
Title: Studies on the Chitin Binding Property of Novel Cysteine-Rich Peptides from Alternanthera sessilis
Authors: Kini, Shruthi G.
Nguyen, Phuong Q. T.
Weissbach, Sophie
Mallagaray, Alvaro
Shin, Joon
Yoon, Ho Sup
Tam, James P.
Keywords: peptide
Titration
Issue Date: 2015
Source: Kini, S. G., Nguyen, P. Q. T., Weissbach, S., Mallagaray, A., Shin, J., Yoon, H. S., et al. (2015). Studies on the Chitin Binding Property of Novel Cysteine-Rich Peptides from Alternanthera sessilis. Biochemistry, 54(43), 6639-6649.
Series/Report no.: Biochemistry
Abstract: Hevein-like peptides make up a family of cysteine-rich peptides (CRPs) and play a role in plants in their defense against insects and fungal pathogens. In this study, we report the isolation and characterization of six hevein-like peptides, aSG1-G3 and aSR1-R3, collectively named altides from green and red varieties of Alternanthera sessilis, a perennial herb belonging to the Amaranthaceae family. Proteomic analysis of altides revealed they contain six cysteines (6C), seven glycines, four prolines, and a conserved chitin-binding domain (SXYGY/SXFGY). Thus far, only four 6C-hevein-like peptides have been isolated and characterized; hence, our study expands the existing library of these peptides. Nuclear magnetic resonance (NMR) study of altides showed its three disulfide bonds were arranged in a cystine knot motif. As a consequence of this disulfide arrangement, they are stable against thermal and enzymatic degradation. Gene cloning studies revealed altides contain a three-domain precursor with an endoplasmic reticulum signal peptide followed by a mature CRP domain and a short C-terminal tail. This indicates that the biosynthesis of altides is through the secretory pathway. (1)H NMR titration experiments showed that the 29-30-amino acid altides bind to chitin oligomers with dissociation constants in the micromolar range. Aromatic residues in the chitin-binding domain of altides were involved in the binding interaction. To the best of our knowledge, aSR1 is the smallest hevein-like peptide with a dissociation constant toward chitotriose comparable to those of hevein and other hevein-like peptides. Together, our study expands the existing library of 6C-hevein-like peptides and provides insights into their structure, biosynthesis, and interaction with chitin oligosaccharides.
URI: https://hdl.handle.net/10356/81890
http://hdl.handle.net/10220/39737
ISSN: 0006-2960
DOI: 10.1021/acs.biochem.5b00872
Schools: School of Biological Sciences 
Rights: © 2015 American Chemical Society. This is the author created version of a work that has been peer reviewed and accepted for publication by Biochemistry, American Chemical Society. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1021/acs.biochem.5b00872].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SBS Journal Articles

SCOPUSTM   
Citations 10

35
Updated on Mar 11, 2024

Web of ScienceTM
Citations 10

32
Updated on Oct 26, 2023

Page view(s) 50

559
Updated on Mar 18, 2024

Download(s) 20

272
Updated on Mar 18, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.