Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/81921
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGuan, Caoen
dc.contributor.authorWang, Yadongen
dc.contributor.authorZacharias, Margiten
dc.contributor.authorWang, Johnen
dc.contributor.authorFan, Hong Jinen
dc.date.accessioned2016-01-22T01:41:07Zen
dc.date.accessioned2019-12-06T14:43:07Z-
dc.date.available2016-01-22T01:41:07Zen
dc.date.available2019-12-06T14:43:07Z-
dc.date.issued2014en
dc.identifier.citationGuan, C., Wang, Y., Zacharias, M., Wang, J., & Fan, H. J. (2015). Atomic-layer-deposition alumina induced carbon on porous NixCo1−xO nanonets for enhanced pseudocapacitive and Li-ion storage performance. Nanotechnology, 26(1), 014001-.en
dc.identifier.issn0957-4484en
dc.identifier.urihttps://hdl.handle.net/10356/81921-
dc.description.abstractA unique composite nanonet of metal oxide@carbon interconnected sheets is obtained by atomic layer deposition (ALD)-assisted fabrication. In this nanonet structure, mesoporous metal oxide nanosheets are covered by a layer of amorphous carbon nanoflakes. Specifically, quasi-vertical aligned and mesoporous NixCo1−xO nanosheets are first fabricated directly on nickel foam substrates by a hydrothermal method. Then, an ALD-enabled carbon coating method is applied for the growth of carbon nanoflakes on the surface of the nanosheets. The thus formed 3D hierarchical structure of NixCo1−xO@carbon composite flakes have a higher surface area, better electrical conductivity and structure stability than the bare NixCo1−xO. The application of such composite nanomaterials is demonstrated as electrodes for a supercapacitor and a lithium-ion battery. In both tests, the composite electrode shows enhancement in capacity and cycling stability. This effective composite nanostructure design of metal oxides@carbon flakes could provide a promising method to construct high-performance materials for energy and environment applications.en
dc.description.sponsorshipASTAR (Agency for Sci., Tech. and Research, S’pore)en
dc.format.extent11 p.en
dc.language.isoenen
dc.relation.ispartofseriesNanotechnologyen
dc.rights© 2015 IOP Publishing Ltd. This is the author created version of a work that has been peer reviewed and accepted for publication by Nanotechnology, IOP Publishing Ltd. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1088/0957-4484/26/1/014001].en
dc.subjectEnergy storageen
dc.subjectCarbonen
dc.subjectMetal oxidesen
dc.subjectAtomic layer depositionen
dc.titleAtomic-layer-deposition alumina induced carbon on porous NixCo1−xO nanonets for enhanced pseudocapacitive and Li-ion storage performanceen
dc.typeJournal Articleen
dc.contributor.schoolSchool of Physical and Mathematical Sciencesen
dc.identifier.doi10.1088/0957-4484/26/1/014001en
dc.description.versionAccepted versionen
item.fulltextWith Fulltext-
item.grantfulltextopen-
Appears in Collections:SPMS Journal Articles
Files in This Item:
File Description SizeFormat 
Atomic-layer-deposition alumina induced carbon on porous NixCo1-xO Nanonets.pdf686.81 kBAdobe PDFThumbnail
View/Open

SCOPUSTM   
Citations 20

22
Updated on Jul 9, 2024

Web of ScienceTM
Citations 20

17
Updated on Oct 29, 2023

Page view(s) 20

658
Updated on Jul 13, 2024

Download(s) 20

236
Updated on Jul 13, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.