Please use this identifier to cite or link to this item:
Title: Variational Multiscale Models for Charge Transport
Authors: Wei, Guo-Wei
Zheng, Qiong
Chen, Zhan
Xia, Kelin
Keywords: variational multiscale models
ion channels
Issue Date: 2012
Source: Wei, G.-W., Zheng, Q., Chen, Z., & Xia, K. (2012). Variational Multiscale Models for Charge Transport. SIAM Review, 54(4), 699-754.
Series/Report no.: SIAM Review
Abstract: This work presents a few variational multiscale models for charge transport in complex physical, chemical, and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors, and ion channels. An essential ingredient of the present models, introduced in an earlier paper [Bull. Math. Biol., 72 (2010), pp. 1562--1622], is the use of the differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, while dynamically coupling discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation and chemical potential related energy. By using the Euler--Lagrange variation, coupled Laplace--Beltrami and Poisson--Nernst--Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson--Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst--Planck (NP) equations. Consequently, the coupled Laplace--Beltrami and Poisson--Boltzmann--Nernst--Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium Laplace--Beltrami and PB (LB-PB) theory and nonequilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at nonequilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace--Beltrami, Poisson--Nernst--Planck, and Navier--Stokes equations from the variational principle for chemo-electro-fluid systems. A number of computational algorithms are developed to implement the proposed new variational multiscale models in an efficient manner. A set of ten protein molecules and a realistic ion channel, Gramicidin A, are employed to confirm the consistency and verify the capability of the algorithms. Extensive numerical experiments are designed to validate the proposed variational multiscale models. A good quantitative agreement between our model prediction and the experimental measurement of current-voltage curves is observed for the Gramicidin A channel transport. This paper also provides a brief review of the field.
ISSN: 0036-1445
DOI: 10.1137/110845690
Schools: School of Physical and Mathematical Sciences 
Rights: © 2012 SIAM. This paper was published in SIAM Review and is made available as an electronic reprint (preprint) with permission of SIAM. The published version is available at: []. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SPMS Journal Articles

Files in This Item:
File Description SizeFormat 
5-Variational Multiscale Models for Charge Transport.pdf5.07 MBAdobe PDFThumbnail

Citations 5

Updated on Jun 12, 2024

Web of ScienceTM
Citations 5

Updated on Oct 25, 2023

Page view(s) 50

Updated on Jun 16, 2024

Download(s) 20

Updated on Jun 16, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.