Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChong, Ket Hingen
dc.contributor.authorSamarasinghe, Sandhyaen
dc.contributor.authorKulasiri, Donen
dc.contributor.authorZheng, Jieen
dc.identifier.citationChong, K. H., Samarasinghe, S., Kulasiri, D., & Zheng, J. (2015). Computational techniques in mathematical modelling of biological switches. 21st International Congress on Modelling and Simulation (MODSIM2015), 578-584.en
dc.description.abstractMathematical models of biological switches have been proposed as a means to study the mechanism of decision making in biological systems. These conceptual models are abstract representations of the key components involved in the crucial cell fate decision underlying the biological system. In this paper, the methods of phase plane analysis and bifurcation analysis are explored and demonstrated using an example from the literature, namely the synthetic genetic circuit proposed by Gardner et al. (2000) which involved two negative loops (from two mutually inhibiting genes). Figure 1 shows a schematic diagram of the synthetic genetic circuit constructed by Gardner et al. (2000). Particularly, a saddle-node bifurcation is used as a signal response curve to capture the bistability of the system. The notion of bistability is obscure to most novice researchers or biologists because it is difficult to understand the existence of two stable steady states and how to flip from one stable steady state to another and vice versa. Thus, the main purpose of this paper is to unlock the computational techniques (bifurcation analysis implemented in a software tool called XPPAUT) in mathematical modelling of bistability through a simple example from Gardner et al. (2000). In addition, time course simulations are provided to illustrate: 1) the notion of bistability where the existence of two stable steady states and we demonstrated that for two different initial conditions one of the genes is ‘ON’ and the other gene is ‘OFF’; 2) hysteresis behaviour where the saddle-node bifurcation points as two critical points in which to turn ‘ON’ one gene happens at a larger parameter value than to turn ‘OFF’ this gene (at a lower parameter value). The hysteresis behaviour is important for irreversible decision made by cell to commit to turn ‘ON’. In conclusion, the understanding of the computational techniques in modelling biological switch is important for elucidating genetic switch that has potential for gene therapy and can provide explanation for experimental findings of bistable systems.en
dc.description.sponsorshipMOE (Min. of Education, S’pore)en
dc.format.extent7 p.en
dc.rights© 2015 Modelling and Simulation Society of Australia and New Zealand (MSSANZ). This paper was published in 21st International Congress on Modelling and Simulation (MODSIM2015) and is made available as an electronic reprint (preprint) with permission of Modelling and Simulation Society of Australia and New Zealand (MSSANZ). The published version is available at: []. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.en
dc.subjectMathematical modelen
dc.subjectBiological switchen
dc.titleComputational techniques in mathematical modelling of biological switchesen
dc.typeConference Paperen
dc.contributor.schoolSchool of Computer Science and Engineeringen
dc.contributor.conference21st International Congress on Modelling and Simulation (MODSIM2015)en
dc.contributor.researchComplexity Instituteen
dc.description.versionPublished versionen
item.fulltextWith Fulltext-
Appears in Collections:SCSE Conference Papers
Files in This Item:
File Description SizeFormat 
Chong_et_al_Modelling_Biological_Switches_MODSIM_2015.pdf1.3 MBAdobe PDFThumbnail

Page view(s) 5

Updated on Jul 14, 2024

Download(s) 1

Updated on Jul 14, 2024

Google ScholarTM


Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.