Please use this identifier to cite or link to this item:
Title: High-efficiency low-crosstalk dielectric metasurfaces of mid-wave infrared focal plane arrays
Authors: Akın, Onur
Demir, Hilmi Volkan
Keywords: Dielectrics
Dielectric devices
Issue Date: 2017
Source: Akın, O., & Demir, H. V. (2017). High-efficiency low-crosstalk dielectric metasurfaces of mid-wave infrared focal plane arrays. Applied Physics Letters, 110(14), 143106-.
Series/Report no.: Applied Physics Letters
Abstract: High-resolution compact-size focal plane arrays (FPAs) suffer the fundamental geometrical tradeoff between the optical resolution (pixel size miniaturization) and the optical crosstalk (spillover of neighboring pixel focusing). For FPAs, our previously reported metallic metasurfaces reached an unprecedented level of crosstalk suppression. However, practical utilization of these metallic microlens arrays has proved to be intrinsically limited due to the low device efficiency (of the order of 0.10) resulting from the fundamental absorption losses of metals and their cross-polarization scheme. Exceeding this limit, here we show highly efficient microlens designs enabled by dielectric metasurfaces for mid-wave infrared (MWIR) operation. These dielectric MWIR FPAs allow for a substantially high device efficiency over 0.80 without compromising the optical crosstalk performance. Systematically studying dielectric nanoantennas of silicon nanodisks that do not dictate the cross-polarization scheme using full-wave solutions, we found that the optical crosstalk is suppressed to low levels ≤≤ 3.0% while sustaining the high efficiency. A figure-of-merit (FoM) defined for the device performance as the focusing efficiency per optical crosstalk times the f-number achieves 84, which is superior to all other types of MWIR FPAs reported to date, all falling below a maximum FoM of 70. These findings indicate that the proposed approach can pave the way for the practical usage of metasurface microlens arrays in MWIR.
ISSN: 0003-6951
DOI: 10.1063/1.4979664
Schools: School of Electrical and Electronic Engineering 
Rights: © 2017 AIP Publishing. This paper was published in Applied Physics Letters and is made available as an electronic reprint (preprint) with permission of AIP Publishing. The published version is available at: []. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper is prohibited and is subject to penalties under law.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Journal Articles

Citations 20

Updated on Jul 9, 2024

Web of ScienceTM
Citations 20

Updated on Oct 25, 2023

Page view(s) 50

Updated on Jul 11, 2024

Download(s) 50

Updated on Jul 11, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.