Please use this identifier to cite or link to this item: https://hdl.handle.net/10356/83376
Title: Reaction Pathways for the Deoxygenation of Biomass-Pyrolysis-Derived Bio-oil on Ru: A DFT Study using Furfural as a Model Compound
Authors: Banerjee, Arghya
Mushrif, Samir Hemant
Keywords: Biomass
DFT calculations
Issue Date: 2017
Source: Banerjee, A., & Mushrif, S. H. (2017). Reaction Pathways for the Deoxygenation of Biomass-Pyrolysis-Derived Bio-oil on Ru: A DFT Study using Furfural as a Model Compound. ChemCatChem, 9(14), 2828-2838.
Series/Report no.: ChemCatChem
Abstract: Fast pyrolysis is emerging as a promising route for the production of liquid fuels from biomass. However, pyrolysis-derived bio-oil needs to be upgraded prior to its utilization as a fuel and hydrodeoxygenation (HDO) is an important catalytic step for its upgrade. Design of suitable catalysts with high activity and selectivity for the HDO process requires detailed understanding of the underlying catalytic reaction mechanism. As ruthenium (Ru)-based catalysts have been proposed to be the most effective HDO catalysts, the complete reaction network for HDO of furfural, a representative of furanic compounds present in bio-oil, is elucidated in this study on the Ru(0 0 1) surface by using first-principles density functional theory calculations. The reaction pathways for the formation of furfuryl alcohol (FA), tetrahydrofurfuryl alcohol (THFA), methyltetrahydrofuran (MTHF), methylfuran (MF), cyclopentanol, 1,2- and 1,5-pentane diols, furan, and pentanes are established. Furan ring-opening is facile on Ru surfaces and our calculations predict pentane formation to be thermodynamically and kinetically favored in the vapor-phase hydrodeoxygenation of furfural on Ru surfaces.
URI: https://hdl.handle.net/10356/83376
http://hdl.handle.net/10220/43536
ISSN: 1867-3880
DOI: 10.1002/cctc.201700036
Schools: School of Chemical and Biomedical Engineering 
Rights: © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. This is the author created version of a work that has been peer reviewed and accepted for publication by ChemCatChem, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. It incorporates referee’s comments but changes resulting from the publishing process, such as copyediting, structural formatting, may not be reflected in this document. The published version is available at: [http://dx.doi.org/10.1002/cctc.201700036].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SCBE Journal Articles

SCOPUSTM   
Citations 10

38
Updated on Jun 6, 2024

Web of ScienceTM
Citations 10

28
Updated on Oct 31, 2023

Page view(s) 50

594
Updated on Jun 14, 2024

Download(s) 5

535
Updated on Jun 14, 2024

Google ScholarTM

Check

Altmetric


Plumx

Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.