Please use this identifier to cite or link to this item:
Title: Comprehensive analysis of phospholipids and glycolipids in the opportunistic pathogen Enterococcus faecalis
Authors: Rashid, Rafi
Cazenave-Gassiot, Amaury
Gao, Iris H.
Nair, Zeus J.
Kumar, Jaspal K.
Gao, Liang
Kline, Kimberly A.
Wenk, Markus R.
Keywords: Enterococcus faecalis
Issue Date: 2017
Source: Rashid, R., Cazenave-Gassiot, A., Gao, I. H., Nair, Z. J., Kumar, J. K., Gao, L., et al. (2017). Comprehensive analysis of phospholipids and glycolipids in the opportunistic pathogen Enterococcus faecalis. PLOS ONE, 12(4), e0175886-.
Series/Report no.: PLOS ONE
Abstract: Enterococcus faecalis is a Gram-positive, opportunistic, pathogenic bacterium that causes a significant number of antibiotic-resistant infections in hospitalized patients. The development of antibiotic resistance in hospital-associated pathogens is a formidable public health threat. In E. faecalis and other Gram-positive pathogens, correlations exist between lipid composition and antibiotic resistance. Resistance to the last-resort antibiotic daptomycin is accompanied by a decrease in phosphatidylglycerol (PG) levels, whereas multiple peptide resistance factor (MprF) converts anionic PG into cationic lysyl-PG via a trans-esterification reaction, providing resistance to cationic antimicrobial peptides. Unlike previous studies that relied on thin layer chromatography and spectrophotometry, we have performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) directly on lipids extracted from E. faecalis, and quantified the phospholipids through multiple reaction monitoring (MRM). In the daptomycin-sensitive E. faecalis strain OG1RF, we have identified 17 PGs, 8 lysyl-PGs (LPGs), 23 cardiolipins (CL), 3 glycerophospho-diglucosyl-diacylglycerols (GPDGDAG), 5 diglucosyl-diacylglycerols (DGDAG), 3 diacylglycerols (DAGs), and 4 triacylglycerols (TAGs). We have quantified PG and shown that PG levels vary during growth of E. faecalis in vitro. We also show that two daptomycin-resistant (DapR) strains of E. faecalis have substantially lower levels of PG and LPG levels. Since LPG levels in these strains are lower, daptomycin resistance is likely due to the reduction in PG. This lipidome map is the first comprehensive analysis of membrane phospholipids and glycolipids in the important human pathogen E. faecalis, for which antimicrobial resistance and altered lipid homeostasis have been intimately linked.
ISSN: 1932-6203
DOI: 10.1371/journal.pone.0175886
Schools: School of Biological Sciences 
Organisations: Singapore Centre for Environmental Life Sciences Engineering
Rights: © 2017 Rashid et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:SBS Journal Articles
SCELSE Journal Articles

Citations 10

Updated on Jun 17, 2024

Web of ScienceTM
Citations 10

Updated on Oct 26, 2023

Page view(s) 20

Updated on Jun 21, 2024

Download(s) 20

Updated on Jun 21, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.