Please use this identifier to cite or link to this item:
Title: Highly secured arithmetic hiding based S-Box on AES-128 implementation
Authors: Pammu, Ali Akbar
Chong, Kwen-Siong
Gwee, Bah Hwee
Keywords: Side-Channel Attack
Arithmetic Hiding
Issue Date: 2016
Source: Pammu, A. A., Chong, K.-S., & Gwee, B. H. (2016). Highly secured arithmetic hiding based S-Box on AES-128 implementation. 2016 International Symposium on Integrated Circuits (ISIC). (pp. 1-4).
Conference: 2016 International Symposium on Integrated Circuits (ISIC)
Abstract: We propose an arithmetic hiding technique on Advanced Encryption Standard (AES) algorithm implementation to highly secure the algorithm against Side-Channel Attack (SCA). The arithmetic operations run parallel with Substitution-Box (S-Box) operation of the AES to hide the correlated leakage power dissipation with processed data. There are two key features in our proposed hiding technique. First, the function of the arithmetic hiding is independent with S-Box operation and its power dissipation is dominant over the S-Box. Therefore, the dependency of the total power dissipation with processed data in the AES algorithm is relatively low. Second, the security level of proposed technique against SCA based on Correlation Power Analysis (CPA) and Correlation Electromagnetic Analysis (CEMA) attack are increased by 119× and 63× respectively, compared with unprotected S-Box. This is due to the leakage physical parameters (i.e. power dissipation and EM emanation) which is generated by the arithmetic operation hides the leakage parameters of the S-Box operation. Based on the measurement results on Sakura-X FPGA board, which performs AES-128 algorithm, our proposed technique dissipates 3.8mW and features 1.18× higher power dissipation than the unprotected S-Box implementation. However, our proposed arithmetic hiding technique is highly secured, as the result of CPA and CEMA attack require 38,000 power traces and 44,000 EM traces respectively to reveal the secret key. The required number of traces are significantly higher than the unprotected S-Box, which is only 319 power traces and 691 EM traces respectively to uncover the same secret key.
DOI: 10.1109/ISICIR.2016.7829736
Schools: School of Electrical and Electronic Engineering 
Research Centres: Centre for Integrated Circuits and Systems 
Rights: © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. The published version is available at: [].
Fulltext Permission: open
Fulltext Availability: With Fulltext
Appears in Collections:EEE Conference Papers

Files in This Item:
File Description SizeFormat 
Highly Secured Arithmetic Hiding based S-Box .pdfMain Article529.75 kBAdobe PDFThumbnail

Citations 50

Updated on Jan 26, 2024

Page view(s) 20

Updated on Feb 26, 2024

Download(s) 50

Updated on Feb 26, 2024

Google ScholarTM




Items in DR-NTU are protected by copyright, with all rights reserved, unless otherwise indicated.